Cargando…

Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization

Graphene has an extremely high in-plane strength yet considerable out-of-plane softness. High crystalline order of graphene assemblies is desired to utilize their in-plane properties, however, challenged by the easy formation of chaotic wrinkles for the intrinsic softness. Here, we find an intercala...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Peng, Yang, Mincheng, Liu, Yingjun, Qin, Huasong, Liu, Jingran, Xu, Zhen, Liu, Yilun, Meng, Fanxu, Lin, Jiahao, Wang, Fang, Gao, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253461/
https://www.ncbi.nlm.nih.gov/pubmed/32461580
http://dx.doi.org/10.1038/s41467-020-16494-0
Descripción
Sumario:Graphene has an extremely high in-plane strength yet considerable out-of-plane softness. High crystalline order of graphene assemblies is desired to utilize their in-plane properties, however, challenged by the easy formation of chaotic wrinkles for the intrinsic softness. Here, we find an intercalation modulated plasticization phenomenon, present a continuous plasticization stretching method to regulate spontaneous wrinkles of graphene sheets into crystalline orders, and fabricate continuous graphene papers with a high Hermans’ order of 0.93. The crystalline graphene paper exhibits superior mechanical (tensile strength of 1.1 GPa, stiffness of 62.8 GPa) and conductive properties (electrical conductivity of 1.1 × 10(5) S m(−1), thermal conductivity of 109.11 W m(−1) K(−1)). We extend the ultrastrong graphene papers to the realistic laminated composites and achieve high strength combining with attractive conductive and electromagnetic shielding performance. The intercalation modulated plasticity is revealed as a vital state of graphene assemblies, contributing to their industrial processing as metals and plastics.