Cargando…

Finite Element Analysis of Extrusion Process for Magnesium Alloy Internal Threads with Electromagnetic Induction-Assisted Heating and Thread Performance Research

The casting magnesium alloy AZ91D cannot be extruded at room temperature. This paper presents a process for extruding internal threads using AZ91D heated by electromagnetic induction. The feasibility of the process is verified by finite element simulation and experiments. Using DEFORM-3D to simulate...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Meng, Ji, Zesheng, Fan, Rui, Wang, Xingguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254356/
https://www.ncbi.nlm.nih.gov/pubmed/32397214
http://dx.doi.org/10.3390/ma13092170
Descripción
Sumario:The casting magnesium alloy AZ91D cannot be extruded at room temperature. This paper presents a process for extruding internal threads using AZ91D heated by electromagnetic induction. The feasibility of the process is verified by finite element simulation and experiments. Using DEFORM-3D to simulate the process of extruding a M12 × 1.25 mm threaded hole by electromagnetic induction-assisted heating, the equivalent stress-strain and material flow law in the process of thread deformation was analyzed and verified by experiments. Three parameters—hole diameter, machine speed and heating temperature—were considered to study the influence of different process conditions on the forming torque. The results show that a heating temperature above 523 K can improve the plasticity of AZ91D. The hole diameter has an important influence on the forming torque. The forming process is not suitable for high-speed machining. The surface metal of the thread formed by this process has a strong deformation layer, which can improve the strength and hardness of the thread.