Cargando…
Synergistic Effect and Chlorine-Release Behaviors During Co-pyrolysis of LLDPE, PP, and PVC
[Image: see text] Plastic wastes are environmentally problematic and costly to treat, but they also represent a vast untapped resource for the renewable chemical and fuel production. Pyrolysis has received extensive attention in the treatment of plastic wastes because of its technical maturity. A so...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254513/ https://www.ncbi.nlm.nih.gov/pubmed/32478216 http://dx.doi.org/10.1021/acsomega.9b04116 |
Sumario: | [Image: see text] Plastic wastes are environmentally problematic and costly to treat, but they also represent a vast untapped resource for the renewable chemical and fuel production. Pyrolysis has received extensive attention in the treatment of plastic wastes because of its technical maturity. A sole polymer in the waste plastic is easy to recycle by any means of physical or chemical techniques. However, the majority of plastic in life are mixtures and they are hard to separate, which make pyrolysis of plastic complicated compared with pure plastic because of its difference in physical/chemical properties. This work focuses on the synergistic effect and its impact on chlorine removal from the pyrolysis of chlorinated plastic mixtures. The pyrolysis behavior of plastic mixtures was investigated in terms of thermogravimetric analysis, and the corresponding kinetics were analyzed according to the distributed activation energy model (DAEM). The results show that the synergistic effect existed in the pyrolysis of a plastic mixture of LLDPE, PP, and PVC, and the DAEM could well predict the kinetics behavior. The decomposition of LLDPE/PP mixtures occurred earlier than that of calculated ones. However, the synergistic effect weakened with the increase of LLDPE in the mixtures. As for the chlorine removal, the LLDPE and PP hindered the chlorine removal from PVC during the plastic mixture pyrolysis. A noticeable negative effect on dechlorination was observed after the introduction of LLDPE or PP. Besides, the chlorine-releasing temperature became higher during the pyrolysis of plastic mixtures ([LLDPE/PVC (1:1), PP/PVC (1:1), and LLDPE/PP/PVC (1:1:1)]. These results imply that the treatment of chlorinated plastic wastes was more difficult than that of PVC in thermal conversion. In other words, more attention should be paid to both the high-temperature chlorine corrosion and high-efficient chlorine removal in practical. These data are helpful for the treatment and thermal utilization of the yearly increased plastic wastes. |
---|