Cargando…

Anisotropic Magnetic Resonance in Random Nanocrystal Quantum Dot Ensembles

[Image: see text] Magnetic anisotropy critically determines the utility of magnetic nanocrystals (NCs) in new nanomagnetism technologies. Using angular-dependent electron magnetic resonance (EMR), we observe magnetic anisotropy in isotropically arranged NCs of a nonmagnetic material. We show that th...

Descripción completa

Detalles Bibliográficos
Autores principales: Almeida, António J. S., Sahu, Ayaskanta, Norris, David J., Kakazei, Gleb N., Kannan, Haripriya, Brandt, Martin S., Stutzmann, Martin, Pereira, Rui N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254520/
https://www.ncbi.nlm.nih.gov/pubmed/32478221
http://dx.doi.org/10.1021/acsomega.0c00279
Descripción
Sumario:[Image: see text] Magnetic anisotropy critically determines the utility of magnetic nanocrystals (NCs) in new nanomagnetism technologies. Using angular-dependent electron magnetic resonance (EMR), we observe magnetic anisotropy in isotropically arranged NCs of a nonmagnetic material. We show that the shape of the EMR angular variation can be well described by a simple model that considers magnetic dipole–dipole interactions between dipoles randomly located in the NCs, most likely due to surface dangling bonds. The magnetic anisotropy results from the fact that the energy term arising from the magnetic dipole–dipole interactions between all magnetic moments in the system is dominated by only a few dipole pairs, which always have an anisotropic geometric arrangement. Our work shows that magnetic anisotropy may be a general feature of NC systems containing randomly distributed magnetic dipoles.