Cargando…
Polarization-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography
[Image: see text] Metasurface holography has the advantage of realizing complex wavefront modulation by thin layers together with the progressive technique of computer-generated holographic imaging. Despite the well-known light parameters, such as amplitude, phase, polarization, and frequency, the o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254835/ https://www.ncbi.nlm.nih.gov/pubmed/32348122 http://dx.doi.org/10.1021/acsnano.9b09814 |
Sumario: | [Image: see text] Metasurface holography has the advantage of realizing complex wavefront modulation by thin layers together with the progressive technique of computer-generated holographic imaging. Despite the well-known light parameters, such as amplitude, phase, polarization, and frequency, the orbital angular momentum (OAM) of a beam can be regarded as another degree of freedom. Here, we propose and demonstrate orbital angular momentum multiplexing at different polarization channels using a birefringent metasurface for holographic encryption. The OAM selective holographic information can only be reconstructed with the exact topological charge and a specific polarization state. By using an incident beam with different topological charges as erasers, we mimic a super-resolution case for the reconstructed image, in analogy to the well-known STED technique in microscopy. The combination of multiple polarization channels together with the orbital angular momentum selectivity provides a higher security level for holographic encryption. Such a technique can be applied for beam shaping, optical camouflage, data storage, and dynamic displays. |
---|