Cargando…
Between Proper and Strong Edge-Colorings of Subcubic Graphs
In a proper edge-coloring the edges of every color form a matching. A matching is induced if the end-vertices of its edges induce a matching. A strong edge-coloring is an edge-coloring in which the edges of every color form an induced matching. We consider intermediate types of edge-colorings, where...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254892/ http://dx.doi.org/10.1007/978-3-030-48966-3_27 |
Sumario: | In a proper edge-coloring the edges of every color form a matching. A matching is induced if the end-vertices of its edges induce a matching. A strong edge-coloring is an edge-coloring in which the edges of every color form an induced matching. We consider intermediate types of edge-colorings, where some of the colors are allowed to form matchings, and the remaining form induced matchings. Our research is motivated by the conjecture proposed in a recent paper on S-packing edge-colorings (N. Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019)). We prove that every graph with maximum degree 3 can be decomposed into one matching and at most 8 induced matchings, and two matchings and at most 5 induced matchings. We also show that if a graph is in class I, the number of induced matchings can be decreased by one, hence confirming the conjecture for this class of graphs. |
---|