Cargando…
Parameterized Complexity of [Formula: see text]-Path Packing
Given a graph [Formula: see text], [Formula: see text], and integers k and [Formula: see text], the [Formula: see text] -Path Packing problem asks to find k vertex-disjoint paths of length [Formula: see text] that have endpoints in A and internal points in [Formula: see text]. We study the parameter...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254919/ http://dx.doi.org/10.1007/978-3-030-48966-3_4 |
Sumario: | Given a graph [Formula: see text], [Formula: see text], and integers k and [Formula: see text], the [Formula: see text] -Path Packing problem asks to find k vertex-disjoint paths of length [Formula: see text] that have endpoints in A and internal points in [Formula: see text]. We study the parameterized complexity of this problem with parameters |A|, [Formula: see text], k, treewidth, pathwidth, and their combinations. We present sharp complexity contrasts with respect to these parameters. Among other results, we show that the problem is polynomial-time solvable when [Formula: see text], while it is NP-complete for constant [Formula: see text]. We also show that the problem is W[1]-hard parameterized by pathwidth[Formula: see text], while it is fixed-parameter tractable parameterized by treewidth[Formula: see text]. |
---|