Cargando…
Construction and Analysis of Double Helix for Triangular Bipyramid and Pentangular Bipyramid
DNA cages can be joined together to make larger 3D nanostructures on which molecular electronic circuits and tiny containers are built for drug delivery. The mathematical models for these promising nanomaterials play important roles in clarifying their assembly mechanism and understanding their stru...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255045/ https://www.ncbi.nlm.nih.gov/pubmed/32549907 http://dx.doi.org/10.1155/2020/5609593 |
Sumario: | DNA cages can be joined together to make larger 3D nanostructures on which molecular electronic circuits and tiny containers are built for drug delivery. The mathematical models for these promising nanomaterials play important roles in clarifying their assembly mechanism and understanding their structures. In this study, we propose a mathematical and computer method to construct permissible topological structures with double-helical edges for a triangular bipyramid and pentangular bipyramid. Furthermore, we remove the same topological links, without eliminating the nonrepeated ones for a triangular bipyramid and pentangular bipyramid. By analyzing characteristics of these unique links, some self-assembly and statistic rules are discussed. This study may obtain some new insights into the DNA assembly from the viewpoint of mathematics, promoting the comprehending and design efficiency of DNA polyhedra with required topological structures. |
---|