Cargando…
Epigenetic preconditioning with decitabine sensitizes glioblastoma to temozolomide via induction of MLH1
INTRODUCTION: To improve the standard treatment paradigm for glioblastoma (GBM), efforts have been made to explore the efficacy of epigenetic agents as chemosensitizers. Recent data suggest possible synergy between decitabine (DAC), a DNA hypomethylating agent, and temozolomide (TMZ) in GBM, but the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256087/ https://www.ncbi.nlm.nih.gov/pubmed/32193690 http://dx.doi.org/10.1007/s11060-020-03461-4 |
Sumario: | INTRODUCTION: To improve the standard treatment paradigm for glioblastoma (GBM), efforts have been made to explore the efficacy of epigenetic agents as chemosensitizers. Recent data suggest possible synergy between decitabine (DAC), a DNA hypomethylating agent, and temozolomide (TMZ) in GBM, but the mechanism remains unclear. The objective of this study was to determine the effects of DAC on TMZ sensitization in a consecutively derived set of primary GBM cultures, with a focus on mismatch repair (MMR) proteins. METHODS: Half maximal inhibitory concentrations (IC(50)) of TMZ were calculated in eleven consecutive patient-derived GBM cell lines before and after preconditioning with DAC. MMR protein expression changes were determined by quantitative immunoblots and qPCR arrays. Single-molecule real-time (SMRT) sequencing of bisulfite (BS)-converted PCR amplicons of the MLH1 promoter was performed to determine methylation status. RESULTS: TMZ IC(50) significantly changed in 6 of 11 GBM lines of varying MGMT promoter methylation status in response to DAC preconditioning. Knockdown of MLH1 after preconditioning reversed TMZ sensitization. SMRT-BS sequencing of the MLH1 promoter region revealed higher levels of baseline methylation at proximal CpGs in desensitized lines compared to sensitized lines. CONCLUSIONS: DAC enhances TMZ cytotoxicity in a subset of GBM cell lines, comprising lines both MGMT methylated and unmethylated tumors. This effect may be driven by levels of MLH1 via E2F1 transcription factor binding. Using unbiased long-range next-generation bisulfite-sequencing, we identified a region of the proximal MLH1 promoter with differential methylation patterns that has potential utility as a clinical biomarker for TMZ sensitization. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11060-020-03461-4) contains supplementary material, which is available to authorized users. |
---|