Cargando…
Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte
Atrial fibrillation (AF) is one of the most prevalent arrhythmias. Myocardial sleeves of the pulmonary vein are critical in the occurrence of AF. Our study aims to investigate the effect of synthetic vascular smooth muscle cells (SMCs) on gap junction proteins in cardiomyocytes. (1) Extraction of va...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256098/ https://www.ncbi.nlm.nih.gov/pubmed/32270355 http://dx.doi.org/10.1007/s00380-020-01602-3 |
_version_ | 1783539846390743040 |
---|---|
author | Zhou, En Zhang, Tiantian Bi, Changlong Wang, Changqian Zhang, Zongqi |
author_facet | Zhou, En Zhang, Tiantian Bi, Changlong Wang, Changqian Zhang, Zongqi |
author_sort | Zhou, En |
collection | PubMed |
description | Atrial fibrillation (AF) is one of the most prevalent arrhythmias. Myocardial sleeves of the pulmonary vein are critical in the occurrence of AF. Our study aims to investigate the effect of synthetic vascular smooth muscle cells (SMCs) on gap junction proteins in cardiomyocytes. (1) Extraction of vascular SMCs from the pulmonary veins of Norway rats. TGF-β(1) was used to induce the vascular SMCs switching to the synthetic phenotype and 18-α-GA was used to inhibit gap junctions of SMCs. The contractile and synthetic phenotype vascular SMCs were cocultured with HL-1 cells; (2) Western blotting was used to detect the expression of Cx43, Cx40 and Cx45 in HL-1 cells, and RT-PCR to test microRNA 27b in vascular SMCs or in HL-1 cells; (3) Lucifer yellow dye transfer experiment was used to detect the function of gap junctions. (1) TGF- β(1) induced the vascular SMCs switching to synthetic phenotype; (2) Cx43 was significantly increased, and Cx40 and Cx45 were decreased in HL-1 cocultured with synthetic SMCs; (3) The fluorescence intensity of Lucifer yellow was higher in HL-1 cocultured with synthetic SMCs than that in the cells cocultured with contractile SMCs, which was inhibited by18-α-GA; (4) the expression of microRNA 27b was increased in HL-1 cocultured with synthetic SMCs, which was attenuated markedly by 18-α-GA. (5) the expression of ZFHX3 was decreased in HL-1 cocultured with synthetic SMCs, which was reversed by 18-α-GA. The gap junction proteins of HL-1 were regulated by pulmonary venous SMCs undergoing phenotypic transition in this study, accompanied with the up-regulation of microRNA 27b and the down-regulation of ZFHX3 in HL-1 cells, which was associated with heterocellular gap junctions between HL-1 and pulmonary venous SMCs. |
format | Online Article Text |
id | pubmed-7256098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-72560982020-06-08 Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte Zhou, En Zhang, Tiantian Bi, Changlong Wang, Changqian Zhang, Zongqi Heart Vessels Original Article Atrial fibrillation (AF) is one of the most prevalent arrhythmias. Myocardial sleeves of the pulmonary vein are critical in the occurrence of AF. Our study aims to investigate the effect of synthetic vascular smooth muscle cells (SMCs) on gap junction proteins in cardiomyocytes. (1) Extraction of vascular SMCs from the pulmonary veins of Norway rats. TGF-β(1) was used to induce the vascular SMCs switching to the synthetic phenotype and 18-α-GA was used to inhibit gap junctions of SMCs. The contractile and synthetic phenotype vascular SMCs were cocultured with HL-1 cells; (2) Western blotting was used to detect the expression of Cx43, Cx40 and Cx45 in HL-1 cells, and RT-PCR to test microRNA 27b in vascular SMCs or in HL-1 cells; (3) Lucifer yellow dye transfer experiment was used to detect the function of gap junctions. (1) TGF- β(1) induced the vascular SMCs switching to synthetic phenotype; (2) Cx43 was significantly increased, and Cx40 and Cx45 were decreased in HL-1 cocultured with synthetic SMCs; (3) The fluorescence intensity of Lucifer yellow was higher in HL-1 cocultured with synthetic SMCs than that in the cells cocultured with contractile SMCs, which was inhibited by18-α-GA; (4) the expression of microRNA 27b was increased in HL-1 cocultured with synthetic SMCs, which was attenuated markedly by 18-α-GA. (5) the expression of ZFHX3 was decreased in HL-1 cocultured with synthetic SMCs, which was reversed by 18-α-GA. The gap junction proteins of HL-1 were regulated by pulmonary venous SMCs undergoing phenotypic transition in this study, accompanied with the up-regulation of microRNA 27b and the down-regulation of ZFHX3 in HL-1 cells, which was associated with heterocellular gap junctions between HL-1 and pulmonary venous SMCs. Springer Japan 2020-04-08 2020 /pmc/articles/PMC7256098/ /pubmed/32270355 http://dx.doi.org/10.1007/s00380-020-01602-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Zhou, En Zhang, Tiantian Bi, Changlong Wang, Changqian Zhang, Zongqi Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
title | Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
title_full | Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
title_fullStr | Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
title_full_unstemmed | Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
title_short | Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
title_sort | vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256098/ https://www.ncbi.nlm.nih.gov/pubmed/32270355 http://dx.doi.org/10.1007/s00380-020-01602-3 |
work_keys_str_mv | AT zhouen vascularsmoothmusclecellphenotypictransitionregulatesgapjunctionsofcardiomyocyte AT zhangtiantian vascularsmoothmusclecellphenotypictransitionregulatesgapjunctionsofcardiomyocyte AT bichanglong vascularsmoothmusclecellphenotypictransitionregulatesgapjunctionsofcardiomyocyte AT wangchangqian vascularsmoothmusclecellphenotypictransitionregulatesgapjunctionsofcardiomyocyte AT zhangzongqi vascularsmoothmusclecellphenotypictransitionregulatesgapjunctionsofcardiomyocyte |