Cargando…
Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3
Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256108/ https://www.ncbi.nlm.nih.gov/pubmed/31435697 http://dx.doi.org/10.1007/s00018-019-03279-y |
_version_ | 1783539848565489664 |
---|---|
author | Haag, Franziska Ahmed, Lucky Reiss, Krystle Block, Eric Batista, Victor S. Krautwurst, Dietmar |
author_facet | Haag, Franziska Ahmed, Lucky Reiss, Krystle Block, Eric Batista, Victor S. Krautwurst, Dietmar |
author_sort | Haag, Franziska |
collection | PubMed |
description | Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse—so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00018-019-03279-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7256108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-72561082020-06-08 Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 Haag, Franziska Ahmed, Lucky Reiss, Krystle Block, Eric Batista, Victor S. Krautwurst, Dietmar Cell Mol Life Sci Original Article Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse—so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00018-019-03279-y) contains supplementary material, which is available to authorized users. Springer International Publishing 2019-08-21 2020 /pmc/articles/PMC7256108/ /pubmed/31435697 http://dx.doi.org/10.1007/s00018-019-03279-y Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Haag, Franziska Ahmed, Lucky Reiss, Krystle Block, Eric Batista, Victor S. Krautwurst, Dietmar Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 |
title | Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 |
title_full | Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 |
title_fullStr | Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 |
title_full_unstemmed | Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 |
title_short | Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3 |
title_sort | copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human or2m3 |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256108/ https://www.ncbi.nlm.nih.gov/pubmed/31435697 http://dx.doi.org/10.1007/s00018-019-03279-y |
work_keys_str_mv | AT haagfranziska coppermediatedthiolpotentiationandmutagenesisguidedmodelingsuggestahighlyconservedcopperbindingmotifinhumanor2m3 AT ahmedlucky coppermediatedthiolpotentiationandmutagenesisguidedmodelingsuggestahighlyconservedcopperbindingmotifinhumanor2m3 AT reisskrystle coppermediatedthiolpotentiationandmutagenesisguidedmodelingsuggestahighlyconservedcopperbindingmotifinhumanor2m3 AT blockeric coppermediatedthiolpotentiationandmutagenesisguidedmodelingsuggestahighlyconservedcopperbindingmotifinhumanor2m3 AT batistavictors coppermediatedthiolpotentiationandmutagenesisguidedmodelingsuggestahighlyconservedcopperbindingmotifinhumanor2m3 AT krautwurstdietmar coppermediatedthiolpotentiationandmutagenesisguidedmodelingsuggestahighlyconservedcopperbindingmotifinhumanor2m3 |