Cargando…

BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing

The transcription factor BMAL1 is a core element of the circadian clock that contributes to cyclic control of genes transcribed by RNA polymerase II. By using biochemical cellular fractionation and immunofluorescence analyses we reveal a previously uncharacterized nucleolar localization for BMAL1. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Cervantes, Marlene, Forné, Ignasi, Ranjit, Suman, Gratton, Enrico, Imhof, Axel, Sassone-Corsi, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256328/
https://www.ncbi.nlm.nih.gov/pubmed/32450515
http://dx.doi.org/10.1016/j.isci.2020.101151
Descripción
Sumario:The transcription factor BMAL1 is a core element of the circadian clock that contributes to cyclic control of genes transcribed by RNA polymerase II. By using biochemical cellular fractionation and immunofluorescence analyses we reveal a previously uncharacterized nucleolar localization for BMAL1. We used an unbiased approach to determine the BMAL1 interactome by mass spectrometry and identified NOP58 as a prominent nucleolar interactor. NOP58, a core component of the box C/D small nucleolar ribonucleoprotein complex, associates with Snord118 to control specific pre-ribosomal RNA (pre-rRNA) processing steps. These results suggest a non-canonical role of BMAL1 in ribosomal RNA regulation. Indeed, we show that BMAL1 controls NOP58-associated Snord118 nucleolar levels and cleavage of unique pre-rRNA intermediates. Our findings identify an unsuspected function of BMAL1 in the nucleolus that appears distinct from its canonical role in the circadian clock system.