Cargando…
Boosted Ensemble Learning for Anomaly Detection in 5G RAN
The emerging 5G networks promises more throughput, faster, and more reliable services, but as the network complexity and dynamics increases, it becomes more difficult to troubleshoot the systems. Vendors are spending a lot of time and effort on early anomaly detection in their development cycle and...
Autores principales: | Sundqvist, Tobias, Bhuyan, Monowar H., Forsman, Johan, Elmroth, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256370/ http://dx.doi.org/10.1007/978-3-030-49161-1_2 |
Ejemplares similares
-
SDN-Enabled IoT Anomaly Detection Using Ensemble Learning
por: Tsogbaatar, Enkhtur, et al.
Publicado: (2020) -
An Anomaly Detection Algorithm Based on Ensemble Learning for 5G Environment
por: Lei, Lifeng, et al.
Publicado: (2022) -
A Deep Learning Ensemble for Network Anomaly and Cyber-Attack Detection
por: Dutta, Vibekananda, et al.
Publicado: (2020) -
An Ensembled Anomaly Detector for Wafer Fault Detection
por: Furnari, Giuseppe, et al.
Publicado: (2021) -
BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning
por: Okey, Ogobuchi Daniel, et al.
Publicado: (2022)