Cargando…
Real-Time Prediction of Online Shoppers’ Purchasing Intention Using Random Forest
In this paper, we suggest a real-time online shopper behavior prediction system which predicts the visitor’s shopping intent as soon as the website is visited. To do that, we rely on session and visitor information and we investigate naïve Bayes classifier, C4.5 decision tree and random forest. Furt...
Autores principales: | Baati, Karim, Mohsil, Mouad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256375/ http://dx.doi.org/10.1007/978-3-030-49161-1_4 |
Ejemplares similares
-
Smartwatch Sensors with Deep Learning to Predict the Purchase Intentions of Online Shoppers
por: Chang, Ray-I, et al.
Publicado: (2022) -
Nutrition quality of food purchases varies by household income: the SHoPPER study
por: French, Simone A., et al.
Publicado: (2019) -
The Effects on Saturated Fat Purchases of Providing Internet Shoppers with Purchase- Specific Dietary Advice: A Randomised Trial
por: Huang, Amy, et al.
Publicado: (2006) -
To what extent do food purchases reflect shoppers’ diet quality and nutrient intake?
por: Appelhans, Bradley M., et al.
Publicado: (2017) -
Shopper intent prediction from clickstream e-commerce data with minimal browsing information
por: Requena, Borja, et al.
Publicado: (2020)