Cargando…

Promoting Diversity in Content Based Recommendation Using Feature Weighting and LSH

This work proposes an efficient Content-Based (CB) product recommendation methodology that promotes diversity. A heuristic CB approach incorporating feature weighting and Locality-Sensitive Hashing (LSH) is used, along with the TF-IDF method and functionality of tuning the importance of product feat...

Descripción completa

Detalles Bibliográficos
Autores principales: Beleveslis, Dimosthenis, Tjortjis, Christos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256377/
http://dx.doi.org/10.1007/978-3-030-49161-1_38
Descripción
Sumario:This work proposes an efficient Content-Based (CB) product recommendation methodology that promotes diversity. A heuristic CB approach incorporating feature weighting and Locality-Sensitive Hashing (LSH) is used, along with the TF-IDF method and functionality of tuning the importance of product features to adjust its logic to the needs of various e-commerce sites. The problem of efficiently producing recommendations, without compromising similarity, is addressed by approximating product similarities via the LSH technique. The methodology is evaluated on two sets with real e-commerce data. The evaluation of the proposed methodology shows that the produced recommendations can help customers to continue browsing a site by providing them with the necessary “next step”. Finally, it is demonstrated that the methodology incorporates recommendation diversity which can be adjusted by tuning the appropriate feature weights.