Cargando…
Arbitrary Scale Super-Resolution for Brain MRI Images
Recent attempts at Super-Resolution for medical images used deep learning techniques such as Generative Adversarial Networks (GANs) to achieve perceptually realistic single image Super-Resolution. Yet, they are constrained by their inability to generalise to different scale factors. This involves hi...
Autores principales: | Tan, Chuan, Zhu, Jin, Lio’, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256400/ http://dx.doi.org/10.1007/978-3-030-49161-1_15 |
Ejemplares similares
-
Depth Completion and Super-Resolution with Arbitrary Scale Factors for Indoor Scenes †
por: Truong, Anh Minh, et al.
Publicado: (2021) -
Super‐resolution of brain tumor MRI images based on deep learning
por: Zhou, Zhiyi, et al.
Publicado: (2022) -
Self-Super-Resolution of an MRI Image with Assistance of the DSTTD System
por: Vasanth Raj, P. T., et al.
Publicado: (2022) -
Unbalanced SSFP for super-resolution in MRI
por: Lally, Peter J., et al.
Publicado: (2021) -
Imaging arbitrary incoherent source distributions with near quantum-limited resolution
por: Matlin, Erik F., et al.
Publicado: (2022)