Cargando…
Α Benchmarking of IBM, Google and Wit Automatic Speech Recognition Systems
As the requirements for automatic speech recognition are continually increasing, the demand for accuracy and efficiency is also of particular interest. In this paper, we present most of the well-known Automated Speech Recognition systems (ASR), and we benchmark three of them, namely the IBM Watson,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256403/ http://dx.doi.org/10.1007/978-3-030-49161-1_7 |
Sumario: | As the requirements for automatic speech recognition are continually increasing, the demand for accuracy and efficiency is also of particular interest. In this paper, we present most of the well-known Automated Speech Recognition systems (ASR), and we benchmark three of them, namely the IBM Watson, Google, and Wit, using the WER, Hper, and Rper error metrics. The experimental results show that Google’s automatic speech recognition performs better among the three systems. We intend to extend the benchmarking both to include most of the available Automated Speech Recognition systems and increase our test data. |
---|