Cargando…
Graph Neural Networks to Advance Anticancer Drug Design
Predicting the activity of chemical compounds against cancer is a crucial task. Active chemical compounds against cancer help pharmaceutical drugs producers in the conception of anticancer medicines. Still the innate way of representing chemical compounds is by graphs, the machine learning algorithm...
Autores principales: | Rassil, Asmaa, Chougrad, Hiba, Zouaki, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256423/ http://dx.doi.org/10.1007/978-3-030-49161-1_19 |
Ejemplares similares
-
DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer
por: Shin, Jihye, et al.
Publicado: (2022) -
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022) -
Inverse design of glass structure with deep graph neural networks
por: Wang, Qi, et al.
Publicado: (2021) -
Predicting anticancer hyperfoods with graph convolutional networks
por: Gonzalez, Guadalupe, et al.
Publicado: (2021) -
Drug-Disease Graph: Predicting Adverse Drug Reaction Signals via Graph Neural Network with Clinical Data
por: Kwak, Heeyoung, et al.
Publicado: (2020)