Cargando…
Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning
Antimicrobial peptides (AMPs) are a valuable source of antimicrobial agents and a potential solution to the multi-drug resistance problem. In particular, short-length AMPs have been shown to have enhanced antimicrobial activities, higher stability, and lower toxicity to human cells. We present a sho...
Autores principales: | Yan, Jielu, Bhadra, Pratiti, Li, Ang, Sethiya, Pooja, Qin, Longguang, Tai, Hio Kuan, Wong, Koon Ho, Siu, Shirley W.I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256447/ https://www.ncbi.nlm.nih.gov/pubmed/32464552 http://dx.doi.org/10.1016/j.omtn.2020.05.006 |
Ejemplares similares
-
AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest
por: Bhadra, Pratiti, et al.
Publicado: (2018) -
Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
por: Yan, Jielu, et al.
Publicado: (2022) -
DeepPep: Deep proteome inference from peptide profiles
por: Kim, Minseung, et al.
Publicado: (2017) -
A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against Escherichia coli using Multi-Branch-CNN and Attention
por: Yan, Jielu, et al.
Publicado: (2023) -
Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening
por: Tai, Hio Kuan, et al.
Publicado: (2018)