Cargando…
On the Learnability of Concepts: With Applications to Comparing Word Embedding Algorithms
Word Embeddings are used widely in multiple Natural Language Processing (NLP) applications. They are coordinates associated with each word in a dictionary, inferred from statistical properties of these words in a large corpus. In this paper we introduce the notion of “concept” as a list of words tha...
Autores principales: | Sutton, Adam, Cristianini, Nello |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256569/ http://dx.doi.org/10.1007/978-3-030-49186-4_35 |
Ejemplares similares
-
English colour terms carry gender and valence biases: A corpus study using word embeddings
por: Jonauskaite, Domicele, et al.
Publicado: (2021) -
Learnable latent embeddings for joint behavioural and neural analysis
por: Schneider, Steffen, et al.
Publicado: (2023) -
Learnable axonal delay in spiking neural networks improves spoken word recognition
por: Sun, Pengfei, et al.
Publicado: (2023) -
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Learnability for the Information Bottleneck
por: Wu, Tailin, et al.
Publicado: (2019)