Cargando…
Bridging the Gap Between AI and Healthcare Sides: Towards Developing Clinically Relevant AI-Powered Diagnosis Systems
Despite the success of Convolutional Neural Network-based Computer-Aided Diagnosis research, its clinical applications remain challenging. Accordingly, developing medical Artificial Intelligence (AI) fitting into a clinical environment requires identifying/bridging the gap between AI and Healthcare...
Autores principales: | Han, Changhee, Rundo, Leonardo, Murao, Kohei, Nemoto, Takafumi, Nakayama, Hideki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256589/ http://dx.doi.org/10.1007/978-3-030-49186-4_27 |
Ejemplares similares
-
Knowledge is power - keeping radiology relevant in the age of AI-based healthcare
por: Pinto, Erique Guedes
Publicado: (2021) -
The dark sides of AI
por: Cheng, Xusen, et al.
Publicado: (2022) -
Towards AI-powered personalization in MOOC learning
por: Yu, Han, et al.
Publicado: (2017) -
Implementing AI in healthcare—the relevance of trust: a scoping review
por: Steerling, Emilie, et al.
Publicado: (2023) -
Bridging the “last mile” gap between AI implementation and operation: “data awareness” that matters
por: Cabitza, Federico, et al.
Publicado: (2020)