Cargando…
Harnessing the potential of artificial neural networks for predicting protein glycosylation
Kinetic models offer incomparable insight on cellular mechanisms controlling protein glycosylation. However, their ability to reproduce site-specific glycoform distributions depends on accurate estimation of a large number of protein-specific kinetic parameters and prior knowledge of enzyme and tran...
Autores principales: | Kotidis, Pavlos, Kontoravdi, Cleo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256630/ https://www.ncbi.nlm.nih.gov/pubmed/32489858 http://dx.doi.org/10.1016/j.mec.2020.e00131 |
Ejemplares similares
-
Osmolality Effects on CHO Cell Growth, Cell Volume, Antibody Productivity and Glycosylation
por: Alhuthali, Sakhr, et al.
Publicado: (2021) -
The era of big data: Genome-scale modelling meets machine learning
por: Antonakoudis, Athanasios, et al.
Publicado: (2020) -
Application of Artificial Neural Network in miRNA Biomarker Selection and Precise Diagnosis of Colorectal Cancer
por: Afshar, Saeid, et al.
Publicado: (2019) -
Polymer Encapsulation of Bacterial Biosensors Enables
Coculture with Mammalian Cells
por: Moya-Ramírez, Ignacio, et al.
Publicado: (2022) -
Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury
por: Liu, Min, et al.
Publicado: (2022)