Cargando…

Broad-Spectral-Response Photocatalysts for CO(2) Reduction

[Image: see text] The poor conversion efficiency of carbon dioxide photoreduction has hindered the practical application at present, and one of the prime reasons for this obstacle is the inefficient solar energy utilization of photocatalysts. Generally speaking, it is contradictory for a photocataly...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiao, Xingchen, Zheng, Kai, Hu, Zexun, Sun, Yongfu, Xie, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256938/
https://www.ncbi.nlm.nih.gov/pubmed/32490183
http://dx.doi.org/10.1021/acscentsci.0c00325
Descripción
Sumario:[Image: see text] The poor conversion efficiency of carbon dioxide photoreduction has hindered the practical application at present, and one of the prime reasons for this obstacle is the inefficient solar energy utilization of photocatalysts. Generally speaking, it is contradictory for a photocatalyst to concurrently possess the broad-spectral response and appropriate band-edge positions for coinstantaneous carbon dioxide reduction and water oxidation. In this Outlook, we summarize a series of strategies for realizing visible-light and IR-light-driven carbon dioxide photoreduction under the guarantee of suitable band-edge positions. In detail, we overview the absorbance of visible light enabled by narrow band gaps in photocatalysts, the extended photoabsorption from UV into the visible light range induced by defect levels and dopant energy levels in photocatalysts, and a more negative conduction band and positive valence band acquired by Z-scheme heterojunctions in photocatalysts. Then, we highlight the expansive photoresponse of IR light caused by intermediate bands in semiconductor photocatalysts and partially occupied bands in conductor photocatalysts. Finally, we end this Outlook concerning more design strategies and application fields of broad-spectral-response photocatalysts.