Cargando…
An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries
[Image: see text] Rechargeable Li metal batteries are one of the most attractive energy storage systems due to their high energy density. However, the hostless nature of Li, the excessive dendritic growth, and the accumulation of nonactive Li induce severe volume variation of Li anodes. The volume v...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256944/ https://www.ncbi.nlm.nih.gov/pubmed/32490184 http://dx.doi.org/10.1021/acscentsci.0c00351 |
Sumario: | [Image: see text] Rechargeable Li metal batteries are one of the most attractive energy storage systems due to their high energy density. However, the hostless nature of Li, the excessive dendritic growth, and the accumulation of nonactive Li induce severe volume variation of Li anodes. The volume variation can give rise to a fracture of solid electrolyte interphase, continuous consumption of Li and electrolytes, low Coulombic efficiency, fast performance degradation, and finally short cycle life. This Outlook provides a comprehensive understanding of the origin and consequences of Li volume variation. Recent strategies to address this challenge are reviewed from liquid to gel to solid-state electrolyte systems. In the end, guidelines for structural design and fabrication suggestions for future long-life Li composite anodes are presented. |
---|