Cargando…

An Epoxide Intermediate in Glycosidase Catalysis

[Image: see text] Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a s...

Descripción completa

Detalles Bibliográficos
Autores principales: Sobala, Lukasz F., Speciale, Gaetano, Zhu, Sha, Raich, Lluís, Sannikova, Natalia, Thompson, Andrew J., Hakki, Zalihe, Lu, Dan, Shamsi Kazem Abadi, Saeideh, Lewis, Andrew R., Rojas-Cervellera, Víctor, Bernardo-Seisdedos, Ganeko, Zhang, Yongmin, Millet, Oscar, Jiménez-Barbero, Jesús, Bennet, Andrew J., Sollogoub, Matthieu, Rovira, Carme, Davies, Gideon J., Williams, Spencer J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256955/
https://www.ncbi.nlm.nih.gov/pubmed/32490192
http://dx.doi.org/10.1021/acscentsci.0c00111
_version_ 1783540024748277760
author Sobala, Lukasz F.
Speciale, Gaetano
Zhu, Sha
Raich, Lluís
Sannikova, Natalia
Thompson, Andrew J.
Hakki, Zalihe
Lu, Dan
Shamsi Kazem Abadi, Saeideh
Lewis, Andrew R.
Rojas-Cervellera, Víctor
Bernardo-Seisdedos, Ganeko
Zhang, Yongmin
Millet, Oscar
Jiménez-Barbero, Jesús
Bennet, Andrew J.
Sollogoub, Matthieu
Rovira, Carme
Davies, Gideon J.
Williams, Spencer J.
author_facet Sobala, Lukasz F.
Speciale, Gaetano
Zhu, Sha
Raich, Lluís
Sannikova, Natalia
Thompson, Andrew J.
Hakki, Zalihe
Lu, Dan
Shamsi Kazem Abadi, Saeideh
Lewis, Andrew R.
Rojas-Cervellera, Víctor
Bernardo-Seisdedos, Ganeko
Zhang, Yongmin
Millet, Oscar
Jiménez-Barbero, Jesús
Bennet, Andrew J.
Sollogoub, Matthieu
Rovira, Carme
Davies, Gideon J.
Williams, Spencer J.
author_sort Sobala, Lukasz F.
collection PubMed
description [Image: see text] Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a substrate-borne 2-acetamido neighboring group via an oxazoline intermediate; no enzymatic mechanism with participation of the sugar 2-hydroxyl has been reported. Here, we detail structural, computational, and kinetic evidence for neighboring-group participation by a mannose 2-hydroxyl in glycoside hydrolase family 99 endo-α-1,2-mannanases. We present a series of crystallographic snapshots of key species along the reaction coordinate: a Michaelis complex with a tetrasaccharide substrate; complexes with intermediate mimics, a sugar-shaped cyclitol β-1,2-aziridine and β-1,2-epoxide; and a product complex. The 1,2-epoxide intermediate mimic displayed hydrolytic and transfer reactivity analogous to that expected for the 1,2-anhydro sugar intermediate supporting its catalytic equivalence. Quantum mechanics/molecular mechanics modeling of the reaction coordinate predicted a reaction pathway through a 1,2-anhydro sugar via a transition state in an unusual flattened, envelope (E(3)) conformation. Kinetic isotope effects (k(cat)/K(M)) for anomeric-(2)H and anomeric-(13)C support an oxocarbenium ion-like transition state, and that for C2-(18)O (1.052 ± 0.006) directly implicates nucleophilic participation by the C2-hydroxyl. Collectively, these data substantiate this unprecedented and long-imagined enzymatic mechanism.
format Online
Article
Text
id pubmed-7256955
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-72569552020-06-01 An Epoxide Intermediate in Glycosidase Catalysis Sobala, Lukasz F. Speciale, Gaetano Zhu, Sha Raich, Lluís Sannikova, Natalia Thompson, Andrew J. Hakki, Zalihe Lu, Dan Shamsi Kazem Abadi, Saeideh Lewis, Andrew R. Rojas-Cervellera, Víctor Bernardo-Seisdedos, Ganeko Zhang, Yongmin Millet, Oscar Jiménez-Barbero, Jesús Bennet, Andrew J. Sollogoub, Matthieu Rovira, Carme Davies, Gideon J. Williams, Spencer J. ACS Cent Sci [Image: see text] Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a substrate-borne 2-acetamido neighboring group via an oxazoline intermediate; no enzymatic mechanism with participation of the sugar 2-hydroxyl has been reported. Here, we detail structural, computational, and kinetic evidence for neighboring-group participation by a mannose 2-hydroxyl in glycoside hydrolase family 99 endo-α-1,2-mannanases. We present a series of crystallographic snapshots of key species along the reaction coordinate: a Michaelis complex with a tetrasaccharide substrate; complexes with intermediate mimics, a sugar-shaped cyclitol β-1,2-aziridine and β-1,2-epoxide; and a product complex. The 1,2-epoxide intermediate mimic displayed hydrolytic and transfer reactivity analogous to that expected for the 1,2-anhydro sugar intermediate supporting its catalytic equivalence. Quantum mechanics/molecular mechanics modeling of the reaction coordinate predicted a reaction pathway through a 1,2-anhydro sugar via a transition state in an unusual flattened, envelope (E(3)) conformation. Kinetic isotope effects (k(cat)/K(M)) for anomeric-(2)H and anomeric-(13)C support an oxocarbenium ion-like transition state, and that for C2-(18)O (1.052 ± 0.006) directly implicates nucleophilic participation by the C2-hydroxyl. Collectively, these data substantiate this unprecedented and long-imagined enzymatic mechanism. American Chemical Society 2020-04-16 2020-05-27 /pmc/articles/PMC7256955/ /pubmed/32490192 http://dx.doi.org/10.1021/acscentsci.0c00111 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Sobala, Lukasz F.
Speciale, Gaetano
Zhu, Sha
Raich, Lluís
Sannikova, Natalia
Thompson, Andrew J.
Hakki, Zalihe
Lu, Dan
Shamsi Kazem Abadi, Saeideh
Lewis, Andrew R.
Rojas-Cervellera, Víctor
Bernardo-Seisdedos, Ganeko
Zhang, Yongmin
Millet, Oscar
Jiménez-Barbero, Jesús
Bennet, Andrew J.
Sollogoub, Matthieu
Rovira, Carme
Davies, Gideon J.
Williams, Spencer J.
An Epoxide Intermediate in Glycosidase Catalysis
title An Epoxide Intermediate in Glycosidase Catalysis
title_full An Epoxide Intermediate in Glycosidase Catalysis
title_fullStr An Epoxide Intermediate in Glycosidase Catalysis
title_full_unstemmed An Epoxide Intermediate in Glycosidase Catalysis
title_short An Epoxide Intermediate in Glycosidase Catalysis
title_sort epoxide intermediate in glycosidase catalysis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256955/
https://www.ncbi.nlm.nih.gov/pubmed/32490192
http://dx.doi.org/10.1021/acscentsci.0c00111
work_keys_str_mv AT sobalalukaszf anepoxideintermediateinglycosidasecatalysis
AT specialegaetano anepoxideintermediateinglycosidasecatalysis
AT zhusha anepoxideintermediateinglycosidasecatalysis
AT raichlluis anepoxideintermediateinglycosidasecatalysis
AT sannikovanatalia anepoxideintermediateinglycosidasecatalysis
AT thompsonandrewj anepoxideintermediateinglycosidasecatalysis
AT hakkizalihe anepoxideintermediateinglycosidasecatalysis
AT ludan anepoxideintermediateinglycosidasecatalysis
AT shamsikazemabadisaeideh anepoxideintermediateinglycosidasecatalysis
AT lewisandrewr anepoxideintermediateinglycosidasecatalysis
AT rojascervelleravictor anepoxideintermediateinglycosidasecatalysis
AT bernardoseisdedosganeko anepoxideintermediateinglycosidasecatalysis
AT zhangyongmin anepoxideintermediateinglycosidasecatalysis
AT milletoscar anepoxideintermediateinglycosidasecatalysis
AT jimenezbarberojesus anepoxideintermediateinglycosidasecatalysis
AT bennetandrewj anepoxideintermediateinglycosidasecatalysis
AT sollogoubmatthieu anepoxideintermediateinglycosidasecatalysis
AT roviracarme anepoxideintermediateinglycosidasecatalysis
AT daviesgideonj anepoxideintermediateinglycosidasecatalysis
AT williamsspencerj anepoxideintermediateinglycosidasecatalysis
AT sobalalukaszf epoxideintermediateinglycosidasecatalysis
AT specialegaetano epoxideintermediateinglycosidasecatalysis
AT zhusha epoxideintermediateinglycosidasecatalysis
AT raichlluis epoxideintermediateinglycosidasecatalysis
AT sannikovanatalia epoxideintermediateinglycosidasecatalysis
AT thompsonandrewj epoxideintermediateinglycosidasecatalysis
AT hakkizalihe epoxideintermediateinglycosidasecatalysis
AT ludan epoxideintermediateinglycosidasecatalysis
AT shamsikazemabadisaeideh epoxideintermediateinglycosidasecatalysis
AT lewisandrewr epoxideintermediateinglycosidasecatalysis
AT rojascervelleravictor epoxideintermediateinglycosidasecatalysis
AT bernardoseisdedosganeko epoxideintermediateinglycosidasecatalysis
AT zhangyongmin epoxideintermediateinglycosidasecatalysis
AT milletoscar epoxideintermediateinglycosidasecatalysis
AT jimenezbarberojesus epoxideintermediateinglycosidasecatalysis
AT bennetandrewj epoxideintermediateinglycosidasecatalysis
AT sollogoubmatthieu epoxideintermediateinglycosidasecatalysis
AT roviracarme epoxideintermediateinglycosidasecatalysis
AT daviesgideonj epoxideintermediateinglycosidasecatalysis
AT williamsspencerj epoxideintermediateinglycosidasecatalysis