Cargando…
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
Electroencephalogram (EEG) signals contain vital information on the electrical activities of the brain and are widely used to aid epilepsy analysis. A challenging element of epilepsy diagnosis, accurate classification of different epileptic states, is of particular interest and has been extensively...
Autores principales: | Gao, Yunyuan, Gao, Bo, Chen, Qiang, Liu, Jia, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7257380/ https://www.ncbi.nlm.nih.gov/pubmed/32528398 http://dx.doi.org/10.3389/fneur.2020.00375 |
Ejemplares similares
-
A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data
Publicado: (2021) -
A medium‐weight deep convolutional neural network‐based approach for onset epileptic seizures classification in EEG signals
por: Nemati, Nazanin, et al.
Publicado: (2022) -
Optimisation of deep neural networks for identification of epileptic abnormalities from electroencephalogram signals
por: Kurdthongmee, Wattanapong
Publicado: (2020) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review
por: Singh, Arihant, et al.
Publicado: (2023)