Cargando…
Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems
A genetic algorithm (GA) cannot always avoid premature convergence, and multi-population is usually used to overcome this limitation by dividing the population into several sub-populations (sub-population number) with the same number of individuals (sub-population size). In previous research, the qu...
Autores principales: | Shi, Xiaoqiu, Long, Wei, Li, Yanyan, Deng, Dingshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259647/ https://www.ncbi.nlm.nih.gov/pubmed/32470077 http://dx.doi.org/10.1371/journal.pone.0233759 |
Ejemplares similares
-
An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem
por: Meng, Leilei, et al.
Publicado: (2023) -
A Self-Adjusting Search Domain Method-Based Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem
por: Li, Bin, et al.
Publicado: (2022) -
A New Frequency Analysis Operator for Population Improvement in Genetic Algorithms to Solve the Job Shop Scheduling Problem †
por: Viana, Monique Simplicio, et al.
Publicado: (2022) -
Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem
por: Peng, Chong, et al.
Publicado: (2019) -
Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling Problem
por: Kurowski, Krzysztof, et al.
Publicado: (2020)