Cargando…
ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer
Lung cancer remains the leading cause of cancer-related death worldwide. Since prognosis and treatment outcomes rely on fast and accurate diagnosis, there is a need for more cost-effective, sensitive, and specific method for lung cancer detection. Thus, this study aimed to determine the ability of A...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259682/ https://www.ncbi.nlm.nih.gov/pubmed/32469931 http://dx.doi.org/10.1371/journal.pone.0233626 |
_version_ | 1783540182424748032 |
---|---|
author | Bangaoil, Ruth Santillan, Abegail Angeles, Lara Mae Abanilla, Lorenzo Lim, Antonio Ramos, Ma. Cristina Fellizar, Allan Guevarra, Leonardo Albano, Pia Marie |
author_facet | Bangaoil, Ruth Santillan, Abegail Angeles, Lara Mae Abanilla, Lorenzo Lim, Antonio Ramos, Ma. Cristina Fellizar, Allan Guevarra, Leonardo Albano, Pia Marie |
author_sort | Bangaoil, Ruth |
collection | PubMed |
description | Lung cancer remains the leading cause of cancer-related death worldwide. Since prognosis and treatment outcomes rely on fast and accurate diagnosis, there is a need for more cost-effective, sensitive, and specific method for lung cancer detection. Thus, this study aimed to determine the ability of ATR-FTIR in discriminating malignant from benign lung tissues and evaluate its concordance with H&E staining. Three (3) 5μm-thick sections were cut from formalin fixed paraffin embedded (FFPE) cell or tissue blocks from patients with lung lesions. The outer sections were H&E-stained and sent to two (2) pathologists to confirm the histopathologic diagnosis. The inner section was deparaffinized by standard xylene method and then subjected to ATR-FTIR analysis. Distinct spectral profiles that distinguished (p<0.05) one sample from another, called the “fingerprint region”, were observed in five (5) peak patterns representing the amides, lipids, and nucleic acids. Principal component analysis and hierarchical cluster analysis evidently clustered the benign from malignant tissues. ATR-FTIR showed 97.73% sensitivity, 92.45% specificity, 94.85% accuracy, 91.49% positive predictive value and 98.00% negative predictive value in discriminating benign from malignant lung tissue. Further, strong agreement was observed between histopathologic readings and ATR-FTIR analysis. This study shows the potential of ATR-FTIR spectroscopy as a potential adjunct method to the gold standard, the microscopic examination of hematoxylin and eosin (H&E)-stained tissues, in diagnosing lung cancer. |
format | Online Article Text |
id | pubmed-7259682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72596822020-06-08 ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer Bangaoil, Ruth Santillan, Abegail Angeles, Lara Mae Abanilla, Lorenzo Lim, Antonio Ramos, Ma. Cristina Fellizar, Allan Guevarra, Leonardo Albano, Pia Marie PLoS One Research Article Lung cancer remains the leading cause of cancer-related death worldwide. Since prognosis and treatment outcomes rely on fast and accurate diagnosis, there is a need for more cost-effective, sensitive, and specific method for lung cancer detection. Thus, this study aimed to determine the ability of ATR-FTIR in discriminating malignant from benign lung tissues and evaluate its concordance with H&E staining. Three (3) 5μm-thick sections were cut from formalin fixed paraffin embedded (FFPE) cell or tissue blocks from patients with lung lesions. The outer sections were H&E-stained and sent to two (2) pathologists to confirm the histopathologic diagnosis. The inner section was deparaffinized by standard xylene method and then subjected to ATR-FTIR analysis. Distinct spectral profiles that distinguished (p<0.05) one sample from another, called the “fingerprint region”, were observed in five (5) peak patterns representing the amides, lipids, and nucleic acids. Principal component analysis and hierarchical cluster analysis evidently clustered the benign from malignant tissues. ATR-FTIR showed 97.73% sensitivity, 92.45% specificity, 94.85% accuracy, 91.49% positive predictive value and 98.00% negative predictive value in discriminating benign from malignant lung tissue. Further, strong agreement was observed between histopathologic readings and ATR-FTIR analysis. This study shows the potential of ATR-FTIR spectroscopy as a potential adjunct method to the gold standard, the microscopic examination of hematoxylin and eosin (H&E)-stained tissues, in diagnosing lung cancer. Public Library of Science 2020-05-29 /pmc/articles/PMC7259682/ /pubmed/32469931 http://dx.doi.org/10.1371/journal.pone.0233626 Text en © 2020 Bangaoil et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bangaoil, Ruth Santillan, Abegail Angeles, Lara Mae Abanilla, Lorenzo Lim, Antonio Ramos, Ma. Cristina Fellizar, Allan Guevarra, Leonardo Albano, Pia Marie ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
title | ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
title_full | ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
title_fullStr | ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
title_full_unstemmed | ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
title_short | ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
title_sort | atr-ftir spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259682/ https://www.ncbi.nlm.nih.gov/pubmed/32469931 http://dx.doi.org/10.1371/journal.pone.0233626 |
work_keys_str_mv | AT bangaoilruth atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT santillanabegail atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT angeleslaramae atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT abanillalorenzo atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT limantonio atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT ramosmacristina atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT fellizarallan atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT guevarraleonardo atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer AT albanopiamarie atrftirspectroscopyasadjunctmethodtothemicroscopicexaminationofhematoxylinandeosinstainedtissuesindiagnosinglungcancer |