Cargando…
Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan
BACKGROUND: Although dialysis patients are at a high risk of death, it is difficult for medical practitioners to simultaneously evaluate many inter-related risk factors. In this study, we evaluated the characteristics of hemodialysis patients using machine learning model, and its usefulness for scre...
Autores principales: | Kanda, Eiichiro, Epureanu, Bogdan I., Adachi, Taiji, Tsuruta, Yuki, Kikuchi, Kan, Kashihara, Naoki, Abe, Masanori, Masakane, Ikuto, Nitta, Kosaku |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259704/ https://www.ncbi.nlm.nih.gov/pubmed/32469924 http://dx.doi.org/10.1371/journal.pone.0233491 |
Ejemplares similares
-
Use of vasopressor for dialysis-related hypotension is a risk factor for death in hemodialysis patients: Nationwide cohort study
por: Kanda, Eiichiro, et al.
Publicado: (2019) -
High-performance dialyzers and mortality in maintenance hemodialysis patients
por: Abe, Masanori, et al.
Publicado: (2021) -
Machine-learning-based Web system for the prediction of chronic kidney disease progression and mortality
por: Kanda, Eiichiro, et al.
Publicado: (2023) -
Dialyzer Classification and Mortality in Hemodialysis Patients: A 3-Year Nationwide Cohort Study
por: Abe, Masanori, et al.
Publicado: (2021) -
Dialyzer surface area is a significant predictor of mortality in patients on hemodialysis: a 3-year nationwide cohort study
por: Abe, Masanori, et al.
Publicado: (2021)