Cargando…
Learning clinical networks from medical records based on information estimates in mixed-type data
The precise diagnostics of complex diseases require to integrate a large amount of information from heterogeneous clinical and biomedical data, whose direct and indirect interdependences are notoriously difficult to assess. To this end, we propose an efficient computational approach to simultaneousl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259796/ https://www.ncbi.nlm.nih.gov/pubmed/32421707 http://dx.doi.org/10.1371/journal.pcbi.1007866 |
_version_ | 1783540207761489920 |
---|---|
author | Cabeli, Vincent Verny, Louis Sella, Nadir Uguzzoni, Guido Verny, Marc Isambert, Hervé |
author_facet | Cabeli, Vincent Verny, Louis Sella, Nadir Uguzzoni, Guido Verny, Marc Isambert, Hervé |
author_sort | Cabeli, Vincent |
collection | PubMed |
description | The precise diagnostics of complex diseases require to integrate a large amount of information from heterogeneous clinical and biomedical data, whose direct and indirect interdependences are notoriously difficult to assess. To this end, we propose an efficient computational approach to simultaneously compute and assess the significance of multivariate information between any combination of mixed-type (continuous/categorical) variables. The method is then used to uncover direct, indirect and possibly causal relationships between mixed-type data from medical records, by extending a recent machine learning method to reconstruct graphical models beyond simple categorical datasets. The method is shown to outperform existing tools on benchmark mixed-type datasets, before being applied to analyze the medical records of eldery patients with cognitive disorders from La Pitié-Salpêtrière Hospital, Paris. The resulting clinical network visually captures the global interdependences in these medical records and some facets of clinical diagnosis practice, without specific hypothesis nor prior knowledge on any clinically relevant information. In particular, it provides some physiological insights linking the consequence of cerebrovascular accidents to the atrophy of important brain structures associated to cognitive impairment. |
format | Online Article Text |
id | pubmed-7259796 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72597962020-06-08 Learning clinical networks from medical records based on information estimates in mixed-type data Cabeli, Vincent Verny, Louis Sella, Nadir Uguzzoni, Guido Verny, Marc Isambert, Hervé PLoS Comput Biol Research Article The precise diagnostics of complex diseases require to integrate a large amount of information from heterogeneous clinical and biomedical data, whose direct and indirect interdependences are notoriously difficult to assess. To this end, we propose an efficient computational approach to simultaneously compute and assess the significance of multivariate information between any combination of mixed-type (continuous/categorical) variables. The method is then used to uncover direct, indirect and possibly causal relationships between mixed-type data from medical records, by extending a recent machine learning method to reconstruct graphical models beyond simple categorical datasets. The method is shown to outperform existing tools on benchmark mixed-type datasets, before being applied to analyze the medical records of eldery patients with cognitive disorders from La Pitié-Salpêtrière Hospital, Paris. The resulting clinical network visually captures the global interdependences in these medical records and some facets of clinical diagnosis practice, without specific hypothesis nor prior knowledge on any clinically relevant information. In particular, it provides some physiological insights linking the consequence of cerebrovascular accidents to the atrophy of important brain structures associated to cognitive impairment. Public Library of Science 2020-05-18 /pmc/articles/PMC7259796/ /pubmed/32421707 http://dx.doi.org/10.1371/journal.pcbi.1007866 Text en © 2020 Cabeli et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Cabeli, Vincent Verny, Louis Sella, Nadir Uguzzoni, Guido Verny, Marc Isambert, Hervé Learning clinical networks from medical records based on information estimates in mixed-type data |
title | Learning clinical networks from medical records based on information estimates in mixed-type data |
title_full | Learning clinical networks from medical records based on information estimates in mixed-type data |
title_fullStr | Learning clinical networks from medical records based on information estimates in mixed-type data |
title_full_unstemmed | Learning clinical networks from medical records based on information estimates in mixed-type data |
title_short | Learning clinical networks from medical records based on information estimates in mixed-type data |
title_sort | learning clinical networks from medical records based on information estimates in mixed-type data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259796/ https://www.ncbi.nlm.nih.gov/pubmed/32421707 http://dx.doi.org/10.1371/journal.pcbi.1007866 |
work_keys_str_mv | AT cabelivincent learningclinicalnetworksfrommedicalrecordsbasedoninformationestimatesinmixedtypedata AT vernylouis learningclinicalnetworksfrommedicalrecordsbasedoninformationestimatesinmixedtypedata AT sellanadir learningclinicalnetworksfrommedicalrecordsbasedoninformationestimatesinmixedtypedata AT uguzzoniguido learningclinicalnetworksfrommedicalrecordsbasedoninformationestimatesinmixedtypedata AT vernymarc learningclinicalnetworksfrommedicalrecordsbasedoninformationestimatesinmixedtypedata AT isambertherve learningclinicalnetworksfrommedicalrecordsbasedoninformationestimatesinmixedtypedata |