Cargando…
Predicting Cancer Cell Line Dependencies From the Protein Expression Data of Reverse-Phase Protein Arrays
PURPOSE: Predicting cancer dependencies from molecular data can help stratify patients and identify novel therapeutic targets. Recently available data on large-scale cancer cell line dependency allow a systematic assessment of the predictive power of diverse molecular features; however, the protein...
Autores principales: | Chen, Mei-Ju May, Li, Jun, Mills, Gordon B., Liang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259880/ https://www.ncbi.nlm.nih.gov/pubmed/32330068 http://dx.doi.org/10.1200/CCI.19.00144 |
Ejemplares similares
-
Spatial Normalization of Reverse Phase Protein Array Data
por: Kaushik, Poorvi, et al.
Publicado: (2014) -
A Comprehensive Comparison of Normalization Methods for Loading Control and Variance Stabilization of Reverse-Phase Protein Array Data
por: Liu, Wenbin, et al.
Publicado: (2014) -
RPPA SPACE: an R package for normalization and quantitation of Reverse-Phase Protein Array data
por: Shehwana, Huma, et al.
Publicado: (2022) -
Serial dilution curve: a new method for analysis of reverse phase protein array data
por: Zhang, Li, et al.
Publicado: (2009) -
An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays
por: Guo, Huifang, et al.
Publicado: (2012)