Cargando…
Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces
An unsupervised learning method is presented for determining global marine ecological provinces (eco-provinces) from plankton community structure and nutrient flux data. The systematic aggregated eco-province (SAGE) method identifies eco-provinces within a highly nonlinear ecosystem model. To accomm...
Autores principales: | Sonnewald, Maike, Dutkiewicz, Stephanie, Hill, Christopher, Forget, Gael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259926/ https://www.ncbi.nlm.nih.gov/pubmed/32523981 http://dx.doi.org/10.1126/sciadv.aay4740 |
Ejemplares similares
-
Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions
por: Sonnewald, Maike, et al.
Publicado: (2019) -
Moving ecological and biogeochemical transitions across the North Pacific
por: Follett, Christopher L., et al.
Publicado: (2021) -
Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean
por: Dutkiewicz, Stephanie, et al.
Publicado: (2021) -
Global climate-change trends detected in indicators of ocean ecology
por: Cael, B. B., et al.
Publicado: (2023) -
Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology
por: Inomura, Keisuke, et al.
Publicado: (2022)