Cargando…
Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease
Both steatosis and inflammation are key pathological events in the progression of non-alcoholic fatty liver disease (NAFLD). Probiotics are beneficial for the prevention and treatment of NAFLD. Bifidobacterium animalis subsp. lactis V9 (V9) is a newly isolated strain with favorable probiotic propert...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260323/ https://www.ncbi.nlm.nih.gov/pubmed/32472368 http://dx.doi.org/10.1186/s13568-020-01038-y |
Sumario: | Both steatosis and inflammation are key pathological events in the progression of non-alcoholic fatty liver disease (NAFLD). Probiotics are beneficial for the prevention and treatment of NAFLD. Bifidobacterium animalis subsp. lactis V9 (V9) is a newly isolated strain with favorable probiotic properties. The study aims to evaluate the effects and mechanisms of V9 on the hepatic steatosis and inflammatory responses in a rat model of NAFLD induced by high-fat diets (HFD). Our results showed that administration of V9 significantly attenuated the HFD-induced increases in alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, resulting in alleviated hepatic steatosis. V9 supplementation reduced the accumulation of hepatic triglyceride and free fatty acid,while increasing the levels of glycogen. Serum levels of glucose were also decreased in HFD rats administrated with V9. Meanwhile, the transcription of SREBP-1c and FAS was reduced, and the hepatic expression of phosphorylated-AMPK and PPAR-α was restored after V9 administration. V9 suppressed the production of inflammatory cytokines (e.g. IL-6, IL-1β, and TNF-α) in HFD-fed rats. The anti-inflammatory effects of V9 was found to be associated with the inhibition of hepatic expression of TLR4, TLR9, NLRP3, and ASC mRNA. Furthermore, the activation of ERK, JNK, AKT and NF-κB were suppressed by V9 treatment. These results indicate that Bifidobacterium lactis V9 improves NAFLD by regulating de novo lipid synthesis and suppressing inflammation through AMPK and TLR-NF-κB pathways, respectively. |
---|