Cargando…

First-passage times and normal tissue complication probabilities in the limit of large populations

The time of a stochastic process first passing through a boundary is important to many diverse applications. However, we can rarely compute the analytical distribution of these first-passage times. We develop an approximation to the first and second moments of a general first-passage time problem in...

Descripción completa

Detalles Bibliográficos
Autores principales: Hufton, Peter G., Buckingham-Jeffery, Elizabeth, Galla, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260376/
https://www.ncbi.nlm.nih.gov/pubmed/32472002
http://dx.doi.org/10.1038/s41598-020-64618-9
Descripción
Sumario:The time of a stochastic process first passing through a boundary is important to many diverse applications. However, we can rarely compute the analytical distribution of these first-passage times. We develop an approximation to the first and second moments of a general first-passage time problem in the limit of large, but finite, populations using Kramers–Moyal expansion techniques. We demonstrate these results by application to a stochastic birth-death model for a population of cells in order to develop several approximations to the normal tissue complication probability (NTCP): a problem arising in the radiation treatment of cancers. We specifically allow for interaction between cells, via a nonlinear logistic growth model, and our approximations capture the effects of intrinsic noise on NTCP. We consider examples of NTCP in both a simple model of normal cells and in a model of normal and damaged cells. Our analytical approximation of NTCP could help optimise radiotherapy planning, for example by estimating the probability of complication-free tumour under different treatment protocols.