Cargando…
How are missing data in covariates handled in observational time-to-event studies in oncology? A systematic review
BACKGROUND: Missing data in covariates can result in biased estimates and loss of power to detect associations. It can also lead to other challenges in time-to-event analyses including the handling of time-varying effects of covariates, selection of covariates and their flexible modelling. This revi...
Autores principales: | Carroll, Orlagh U., Morris, Tim P., Keogh, Ruth H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260743/ https://www.ncbi.nlm.nih.gov/pubmed/32471366 http://dx.doi.org/10.1186/s12874-020-01018-7 |
Ejemplares similares
-
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Multiple imputation in Cox regression when there are time‐varying effects of covariates
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
por: Bottigliengo, Daniele, et al.
Publicado: (2021) -
Simulation study - handling missing covariates in the context of external validation
por: Bonnett, Laura J, et al.
Publicado: (2011) -
A New Approach to Handle Missing Covariate Data in Twin Research: With an Application to Educational Achievement Data
por: Schwabe, Inga, et al.
Publicado: (2015)