Cargando…
SMILES-based deep generative scaffold decorator for de-novo drug design
Molecular generative models trained with small sets of molecules represented as SMILES strings can generate large regions of the chemical space. Unfortunately, due to the sequential nature of SMILES strings, these models are not able to generate molecules given a scaffold (i.e., partially-built mole...
Autores principales: | Arús-Pous, Josep, Patronov, Atanas, Bjerrum, Esben Jannik, Tyrchan, Christian, Reymond, Jean-Louis, Chen, Hongming, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260788/ https://www.ncbi.nlm.nih.gov/pubmed/33431013 http://dx.doi.org/10.1186/s13321-020-00441-8 |
Ejemplares similares
-
Randomized SMILES strings improve the quality of molecular generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
A de novo molecular generation method using latent vector based generative adversarial network
por: Prykhodko, Oleksii, et al.
Publicado: (2019) -
Transformer-based molecular optimization beyond matched molecular pairs
por: He, Jiazhen, et al.
Publicado: (2022) -
Exploring the GDB-13 chemical space using deep generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
Human-in-the-loop assisted de novo molecular design
por: Sundin, Iiris, et al.
Publicado: (2022)