Cargando…

SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics

Single-cell transcriptomics offers unprecedented opportunities to infer the ligand–receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predict...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabello-Aguilar, Simon, Alame, Mélissa, Kon-Sun-Tack, Fabien, Fau, Caroline, Lacroix, Matthieu, Colinge, Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/
https://www.ncbi.nlm.nih.gov/pubmed/32196115
http://dx.doi.org/10.1093/nar/gkaa183
_version_ 1783540456088403968
author Cabello-Aguilar, Simon
Alame, Mélissa
Kon-Sun-Tack, Fabien
Fau, Caroline
Lacroix, Matthieu
Colinge, Jacques
author_facet Cabello-Aguilar, Simon
Alame, Mélissa
Kon-Sun-Tack, Fabien
Fau, Caroline
Lacroix, Matthieu
Colinge, Jacques
author_sort Cabello-Aguilar, Simon
collection PubMed
description Single-cell transcriptomics offers unprecedented opportunities to infer the ligand–receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.
format Online
Article
Text
id pubmed-7261168
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-72611682020-06-03 SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics Cabello-Aguilar, Simon Alame, Mélissa Kon-Sun-Tack, Fabien Fau, Caroline Lacroix, Matthieu Colinge, Jacques Nucleic Acids Res Methods Online Single-cell transcriptomics offers unprecedented opportunities to infer the ligand–receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers. Oxford University Press 2020-06-04 2020-03-20 /pmc/articles/PMC7261168/ /pubmed/32196115 http://dx.doi.org/10.1093/nar/gkaa183 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Online
Cabello-Aguilar, Simon
Alame, Mélissa
Kon-Sun-Tack, Fabien
Fau, Caroline
Lacroix, Matthieu
Colinge, Jacques
SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
title SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
title_full SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
title_fullStr SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
title_full_unstemmed SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
title_short SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
title_sort singlecellsignalr: inference of intercellular networks from single-cell transcriptomics
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/
https://www.ncbi.nlm.nih.gov/pubmed/32196115
http://dx.doi.org/10.1093/nar/gkaa183
work_keys_str_mv AT cabelloaguilarsimon singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics
AT alamemelissa singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics
AT konsuntackfabien singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics
AT faucaroline singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics
AT lacroixmatthieu singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics
AT colingejacques singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics