Cargando…
SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
Single-cell transcriptomics offers unprecedented opportunities to infer the ligand–receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predict...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/ https://www.ncbi.nlm.nih.gov/pubmed/32196115 http://dx.doi.org/10.1093/nar/gkaa183 |
_version_ | 1783540456088403968 |
---|---|
author | Cabello-Aguilar, Simon Alame, Mélissa Kon-Sun-Tack, Fabien Fau, Caroline Lacroix, Matthieu Colinge, Jacques |
author_facet | Cabello-Aguilar, Simon Alame, Mélissa Kon-Sun-Tack, Fabien Fau, Caroline Lacroix, Matthieu Colinge, Jacques |
author_sort | Cabello-Aguilar, Simon |
collection | PubMed |
description | Single-cell transcriptomics offers unprecedented opportunities to infer the ligand–receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers. |
format | Online Article Text |
id | pubmed-7261168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72611682020-06-03 SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics Cabello-Aguilar, Simon Alame, Mélissa Kon-Sun-Tack, Fabien Fau, Caroline Lacroix, Matthieu Colinge, Jacques Nucleic Acids Res Methods Online Single-cell transcriptomics offers unprecedented opportunities to infer the ligand–receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers. Oxford University Press 2020-06-04 2020-03-20 /pmc/articles/PMC7261168/ /pubmed/32196115 http://dx.doi.org/10.1093/nar/gkaa183 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Cabello-Aguilar, Simon Alame, Mélissa Kon-Sun-Tack, Fabien Fau, Caroline Lacroix, Matthieu Colinge, Jacques SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
title | SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
title_full | SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
title_fullStr | SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
title_full_unstemmed | SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
title_short | SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
title_sort | singlecellsignalr: inference of intercellular networks from single-cell transcriptomics |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/ https://www.ncbi.nlm.nih.gov/pubmed/32196115 http://dx.doi.org/10.1093/nar/gkaa183 |
work_keys_str_mv | AT cabelloaguilarsimon singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics AT alamemelissa singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics AT konsuntackfabien singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics AT faucaroline singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics AT lacroixmatthieu singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics AT colingejacques singlecellsignalrinferenceofintercellularnetworksfromsinglecelltranscriptomics |