Cargando…
Uncovering the key dimensions of high-throughput biomolecular data using deep learning
Recent advances in high-throughput single-cell RNA-seq have enabled us to measure thousands of gene expression levels at single-cell resolution. However, the transcriptomic profiles are high-dimensional and sparse in nature. To address it, a deep learning framework based on auto-encoder, termed Deep...
Autores principales: | Zhang, Shixiong, Li, Xiangtao, Lin, Qiuzhen, Lin, Jiecong, Wong, Ka-Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261195/ https://www.ncbi.nlm.nih.gov/pubmed/32232416 http://dx.doi.org/10.1093/nar/gkaa191 |
Ejemplares similares
-
Review of single-cell RNA-seq data clustering for cell-type identification and characterization
por: Zhang, Shixiong, et al.
Publicado: (2023) -
Uncovering tissue-specific binding features from differential deep learning
por: Phuycharoen, Mike, et al.
Publicado: (2020) -
Uncovering signal transduction networks from high-throughput data by integer linear programming
por: Zhao, Xing-Ming, et al.
Publicado: (2008) -
IMPLICON: an ultra-deep sequencing method to uncover DNA methylation at imprinted regions
por: Klobučar, Tajda, et al.
Publicado: (2020) -
Heterodimeric DNA motif synthesis and validations
por: Wong, Ka-Chun, et al.
Publicado: (2019)