Cargando…
Quantitative adverse outcome pathway (qAOP) models for toxicity prediction
The quantitative adverse outcome pathway (qAOP) concept is gaining interest due to its potential regulatory applications in chemical risk assessment. Even though an increasing number of qAOP models are being proposed as computational predictive tools, there is no framework to guide their development...
Autores principales: | Spinu, Nicoleta, Cronin, Mark T. D., Enoch, Steven J., Madden, Judith C., Worth, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261727/ https://www.ncbi.nlm.nih.gov/pubmed/32424443 http://dx.doi.org/10.1007/s00204-020-02774-7 |
Ejemplares similares
-
A matter of trust: Learning lessons about causality will make qAOPs credible
por: Spînu, Nicoleta, et al.
Publicado: (2022) -
Towards a qAOP framework for predictive toxicology - Linking data to decisions
por: Paini, Alicia, et al.
Publicado: (2022) -
Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network
por: Spînu, Nicoleta, et al.
Publicado: (2022) -
Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429)
por: Tsamou, Maria, et al.
Publicado: (2022) -
In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects
por: Cronin, Mark T.D., et al.
Publicado: (2017)