Cargando…
The Predictive Validity of Machine Learning Models in the Classification and Treatment of Major Depressive Disorder: State of the Art and Future Directions
Major depressive disorder imposes a substantial disease burden worldwide, ranking as the third leading contributor to global disability. In spite of its ubiquity, classifying and treating depression has proven troublesome. One argument put forward to explain this predicament is the heterogeneity of...
Autores principales: | Ermers, Nick J., Hagoort, Karin, Scheepers, Floortje E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261928/ https://www.ncbi.nlm.nih.gov/pubmed/32523557 http://dx.doi.org/10.3389/fpsyt.2020.00472 |
Ejemplares similares
-
Treating Depression With Tai Chi: State of the Art and Future Perspectives
por: Kong, Jian, et al.
Publicado: (2019) -
Experiences of Siblings of Children With Neurodevelopmental Disorders: Comparing Qualitative Analysis and Machine Learning to Study Narratives
por: Bastiaansen, Jort. A. J., et al.
Publicado: (2022) -
Treating Depression with Transcutaneous Auricular Vagus Nerve Stimulation: State of the Art and Future Perspectives
por: Kong, Jian, et al.
Publicado: (2018) -
Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory
por: Sacchet, Matthew D., et al.
Publicado: (2015) -
Does Residential Green and Blue Space Promote Recovery in Psychotic Disorders? A Cross-Sectional Study in the Province of Utrecht, The Netherlands
por: Boers, Susanne, et al.
Publicado: (2018)