Cargando…

Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis

BACKGROUND: Myocardial infarction (MI) was a severe cardiovascular disease resulted from acute, persistent hypoxia, or ischemia condition. Additionally, MI generally led to heart failure, even sudden death. A multitude of research studies proposed that long noncoding RNAs (lncRNAs) frequently partic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Guang, Lin, Chunsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262654/
https://www.ncbi.nlm.nih.gov/pubmed/32528555
http://dx.doi.org/10.1155/2020/2016259
_version_ 1783540662131490816
author Yang, Guang
Lin, Chunsheng
author_facet Yang, Guang
Lin, Chunsheng
author_sort Yang, Guang
collection PubMed
description BACKGROUND: Myocardial infarction (MI) was a severe cardiovascular disease resulted from acute, persistent hypoxia, or ischemia condition. Additionally, MI generally led to heart failure, even sudden death. A multitude of research studies proposed that long noncoding RNAs (lncRNAs) frequently participated in the regulation of heart diseases. The specific function and molecular mechanism of SOX2-OT in MI remained unclear. Aim of the Study. The current research was aimed to explore the role of SOX2-OT in MI. METHODS: Bioinformatics analysis (DIANA tools and Targetscan) and a wide range of experiments (CCK-8, flow cytometry, RT-qPCR, luciferase reporter, RIP, caspase-3 activity, trans-well, and western blot assays) were adopted to investigate the function and mechanism of SOX2-OT. RESULTS: We discovered that hypoxia treatment decreased cell viability but increased cell apoptosis. Besides, lncRNA SOX2-OT expression was upregulated in hypoxic HCMs. Hereafter, we confirmed that SOX2-OT could negatively regulate miR-27a-3p levels by directly binding with miR-27a-3p, and miR-27a-3p also could negatively regulate SOX2-OT levels. Furthermore, knockdown of SOX2-OT promoted cell proliferation, migration, and invasion, but limited cell apoptosis. However, these effects were reversed by anti-miR-27a-5p. Besides, we verified that miR-27a-3p binding with the 3′UTR of TGFBR1 and SOX2-OT regulated TGFβR1 level by collaborating with miR-27a-3p in HCMs. Eventually, rescue assays validated that the influence of SOX2-OT silence or miR-27a-3p overexpression on cellular processes in cardiomyocytes injury was counteracted by TGFBR1 overexpression. CONCLUSIONS: Long noncoding RNA SOX2-OT exacerbated hypoxia-induced cardiomyocytes injury by regulating miR-27a-3p/TGFβR1 axis, which may provide a novel insight for heart failure treatment.
format Online
Article
Text
id pubmed-7262654
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-72626542020-06-10 Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis Yang, Guang Lin, Chunsheng Cardiovasc Ther Research Article BACKGROUND: Myocardial infarction (MI) was a severe cardiovascular disease resulted from acute, persistent hypoxia, or ischemia condition. Additionally, MI generally led to heart failure, even sudden death. A multitude of research studies proposed that long noncoding RNAs (lncRNAs) frequently participated in the regulation of heart diseases. The specific function and molecular mechanism of SOX2-OT in MI remained unclear. Aim of the Study. The current research was aimed to explore the role of SOX2-OT in MI. METHODS: Bioinformatics analysis (DIANA tools and Targetscan) and a wide range of experiments (CCK-8, flow cytometry, RT-qPCR, luciferase reporter, RIP, caspase-3 activity, trans-well, and western blot assays) were adopted to investigate the function and mechanism of SOX2-OT. RESULTS: We discovered that hypoxia treatment decreased cell viability but increased cell apoptosis. Besides, lncRNA SOX2-OT expression was upregulated in hypoxic HCMs. Hereafter, we confirmed that SOX2-OT could negatively regulate miR-27a-3p levels by directly binding with miR-27a-3p, and miR-27a-3p also could negatively regulate SOX2-OT levels. Furthermore, knockdown of SOX2-OT promoted cell proliferation, migration, and invasion, but limited cell apoptosis. However, these effects were reversed by anti-miR-27a-5p. Besides, we verified that miR-27a-3p binding with the 3′UTR of TGFBR1 and SOX2-OT regulated TGFβR1 level by collaborating with miR-27a-3p in HCMs. Eventually, rescue assays validated that the influence of SOX2-OT silence or miR-27a-3p overexpression on cellular processes in cardiomyocytes injury was counteracted by TGFBR1 overexpression. CONCLUSIONS: Long noncoding RNA SOX2-OT exacerbated hypoxia-induced cardiomyocytes injury by regulating miR-27a-3p/TGFβR1 axis, which may provide a novel insight for heart failure treatment. Hindawi 2020-05-06 /pmc/articles/PMC7262654/ /pubmed/32528555 http://dx.doi.org/10.1155/2020/2016259 Text en Copyright © 2020 Guang Yang and Chunsheng Lin. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yang, Guang
Lin, Chunsheng
Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis
title Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis
title_full Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis
title_fullStr Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis
title_full_unstemmed Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis
title_short Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis
title_sort long noncoding rna sox2-ot exacerbates hypoxia-induced cardiomyocytes injury by regulating mir-27a-3p/tgfβr1 axis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262654/
https://www.ncbi.nlm.nih.gov/pubmed/32528555
http://dx.doi.org/10.1155/2020/2016259
work_keys_str_mv AT yangguang longnoncodingrnasox2otexacerbateshypoxiainducedcardiomyocytesinjurybyregulatingmir27a3ptgfbr1axis
AT linchunsheng longnoncodingrnasox2otexacerbateshypoxiainducedcardiomyocytesinjurybyregulatingmir27a3ptgfbr1axis