Cargando…
Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data
BACKGROUND: Early detection of antimicrobial resistance in pathogens and prescription of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput sequencing technology, such as whole genome sequencing (WGS), may have the capacity to rapidly guide the clinical decision...
Autores principales: | Van Camp, Pieter-Jan, Haslam, David B., Porollo, Aleksey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262952/ https://www.ncbi.nlm.nih.gov/pubmed/32528441 http://dx.doi.org/10.3389/fmicb.2020.01013 |
Ejemplares similares
-
Bioinformatics Approaches to the Understanding of Molecular Mechanisms in Antimicrobial Resistance
por: Van Camp, Pieter-Jan, et al.
Publicado: (2020) -
MGS2AMR: a gene-centric mining of metagenomic sequencing data for pathogens and their antimicrobial resistance profile
por: Van Camp, Pieter-Jan, et al.
Publicado: (2023) -
Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data
por: Pesesky, Mitchell W., et al.
Publicado: (2016) -
SEQ2MGS: an effective tool for generating realistic artificial metagenomes from the existing sequencing data
por: Van Camp, Pieter-Jan, et al.
Publicado: (2022) -
Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin
por: Kirchner, Miranda, et al.
Publicado: (2014)