Cargando…

Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo

Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quart...

Descripción completa

Detalles Bibliográficos
Autores principales: Jayant, Krishna, Wenzel, Michael, Bando, Yuki, Hamm, Jordan P., Mandriota, Nicola, Rabinowitz, Jake H., Plante, Ilan Jen-La, Owen, Jonathan S., Sahin, Ozgur, Shepard, Kenneth L., Yuste, Rafael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263204/
https://www.ncbi.nlm.nih.gov/pubmed/30605681
http://dx.doi.org/10.1016/j.celrep.2018.12.019
_version_ 1783540763661959168
author Jayant, Krishna
Wenzel, Michael
Bando, Yuki
Hamm, Jordan P.
Mandriota, Nicola
Rabinowitz, Jake H.
Plante, Ilan Jen-La
Owen, Jonathan S.
Sahin, Ozgur
Shepard, Kenneth L.
Yuste, Rafael
author_facet Jayant, Krishna
Wenzel, Michael
Bando, Yuki
Hamm, Jordan P.
Mandriota, Nicola
Rabinowitz, Jake H.
Plante, Ilan Jen-La
Owen, Jonathan S.
Sahin, Ozgur
Shepard, Kenneth L.
Yuste, Rafael
author_sort Jayant, Krishna
collection PubMed
description Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10–25 nm and spring constant of ~0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ~800 MΩ, 5 to ~10 cells/nanopipette, and duration of ~1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.
format Online
Article
Text
id pubmed-7263204
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-72632042020-06-01 Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo Jayant, Krishna Wenzel, Michael Bando, Yuki Hamm, Jordan P. Mandriota, Nicola Rabinowitz, Jake H. Plante, Ilan Jen-La Owen, Jonathan S. Sahin, Ozgur Shepard, Kenneth L. Yuste, Rafael Cell Rep Article Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10–25 nm and spring constant of ~0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ~800 MΩ, 5 to ~10 cells/nanopipette, and duration of ~1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo. 2019-01-02 /pmc/articles/PMC7263204/ /pubmed/30605681 http://dx.doi.org/10.1016/j.celrep.2018.12.019 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Jayant, Krishna
Wenzel, Michael
Bando, Yuki
Hamm, Jordan P.
Mandriota, Nicola
Rabinowitz, Jake H.
Plante, Ilan Jen-La
Owen, Jonathan S.
Sahin, Ozgur
Shepard, Kenneth L.
Yuste, Rafael
Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo
title Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo
title_full Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo
title_fullStr Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo
title_full_unstemmed Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo
title_short Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In vivo
title_sort flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263204/
https://www.ncbi.nlm.nih.gov/pubmed/30605681
http://dx.doi.org/10.1016/j.celrep.2018.12.019
work_keys_str_mv AT jayantkrishna flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT wenzelmichael flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT bandoyuki flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT hammjordanp flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT mandriotanicola flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT rabinowitzjakeh flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT planteilanjenla flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT owenjonathans flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT sahinozgur flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT shepardkennethl flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo
AT yusterafael flexiblenanopipettesforminimallyinvasiveintracellularelectrophysiologyinvivo