Cargando…

Grinding of alumina ceramic with microtextured brazed diamond end grinding wheels

Brazed monolayer diamond grinding wheels have advantages of a high abrasive bonding strength, high protrusion, and a large chip disposal space. However, it is difficult to prepare ordered and fine-grained brazed diamond grinding wheels. This study presents a new method for grain-arranged, brazed dia...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shixiong, Zhang, Fenglin, Ni, Yongqian, Chen, Feng, Yan, Zhiqiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd and Techna Group S.r.l. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263301/
https://www.ncbi.nlm.nih.gov/pubmed/32565606
http://dx.doi.org/10.1016/j.ceramint.2020.05.009
Descripción
Sumario:Brazed monolayer diamond grinding wheels have advantages of a high abrasive bonding strength, high protrusion, and a large chip disposal space. However, it is difficult to prepare ordered and fine-grained brazed diamond grinding wheels. This study presents a new method for grain-arranged, brazed diamond grinding wheels with microtextures with similar performance to ordered and fine-grained brazed diamond grinding wheels. First, coarse diamond grains (18/20 mesh) were orderly brazed to fabricate the end grinding wheels. Next, a series of microtextures were ablated on the diamond grains using a pulsed laser, and two types of textured end grinding wheels—TG-G (ablated microgrooves only) and TG-GH (ablated microgrooves and microholes)—were prepared. Then, an experiment involving the grinding of alumina ceramics was performed, and the grinding characteristics and grinding mechanism were analyzed. The results indicated that compared with untextured diamond end grinding wheels (TG), the textured diamond grinding wheels (TG-G and TG-GH) significantly reduced the grinding force and the roughness of the machined surface. The local stress concentration at the microtextures promoted the formation of microcracks in the diamond grains of TG-G and TG-GH, and the self-sharpness of the grinding wheel was significantly improved. The brittle fracture mode of ceramic materials in grinding included intergranular fracture and transgranular fracture. Ironing pressure action was a key material-removal mechanism. It had an important influence on the cutting force and plasticity characteristics of the TG machined surface. For the surfaces processed by TG-G and TG-GH, the effect of ironing was weakened, while shearing played a more important role. The TG-GH grinding wheel ablated with microgrooves and microholes was superior to the TG-G grinding wheel ablated with only microgrooves, with regard to the grinding force, roughness, and self-sharpening.