Cargando…
Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping
BACKGROUND: The pattern of myocardial fibrosis differs significantly between different cardiomyopathies. Fibrosis in hypertrophic cardiomyopathy (HCM) is characteristically as patchy and regional but in dilated cardiomyopathy (DCM) as diffuse and global. We sought to investigate if texture analyses...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263579/ https://www.ncbi.nlm.nih.gov/pubmed/32479518 http://dx.doi.org/10.1371/journal.pone.0233694 |
_version_ | 1783540813612974080 |
---|---|
author | El-Rewaidy, Hossam Neisius, Ulf Nakamori, Shiro Ngo, Long Rodriguez, Jennifer Manning, Warren J. Nezafat, Reza |
author_facet | El-Rewaidy, Hossam Neisius, Ulf Nakamori, Shiro Ngo, Long Rodriguez, Jennifer Manning, Warren J. Nezafat, Reza |
author_sort | El-Rewaidy, Hossam |
collection | PubMed |
description | BACKGROUND: The pattern of myocardial fibrosis differs significantly between different cardiomyopathies. Fibrosis in hypertrophic cardiomyopathy (HCM) is characteristically as patchy and regional but in dilated cardiomyopathy (DCM) as diffuse and global. We sought to investigate if texture analyses on myocardial native T(1) mapping can differentiate between fibrosis patterns in patients with HCM and DCM. METHODS: We prospectively acquired native myocardial T(1) mapping images for 321 subjects (55±15 years, 70% male): 65 control, 116 HCM, and 140 DCM patients. To quantify different fibrosis patterns, four sets of texture descriptors were used to extract 152 texture features from native T(1) maps. Seven features were sequentially selected to identify HCM- and DCM-specific patterns in 70% of data (training dataset). Pattern reproducibility and generalizability were tested on the rest of data (testing dataset) using support vector machines (SVM) and regression models. RESULTS: Pattern-derived texture features were capable to identify subjects in HCM, DCM, and controls cohorts with 202/237(85.2%) accuracy of all subjects in the training dataset using 10-fold cross-validation on SVM (AUC = 0.93, 0.93, and 0.93 for controls, HCM and DCM, respectively), while pattern-independent global native T(1) mapping was poorly capable to identify those subjects with 121/237(51.1%) accuracy (AUC = 0.78, 0.51, and 0.74) (P<0.001 for all). The pattern-derived features were reproducible with excellent intra- and inter-observer reliability and generalizable on the testing dataset with 75/84(89.3%) accuracy. CONCLUSION: Texture analysis of myocardial native T(1) mapping can characterize fibrosis patterns in HCM and DCM patients and provides additional information beyond average native T(1) values. |
format | Online Article Text |
id | pubmed-7263579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72635792020-06-10 Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping El-Rewaidy, Hossam Neisius, Ulf Nakamori, Shiro Ngo, Long Rodriguez, Jennifer Manning, Warren J. Nezafat, Reza PLoS One Research Article BACKGROUND: The pattern of myocardial fibrosis differs significantly between different cardiomyopathies. Fibrosis in hypertrophic cardiomyopathy (HCM) is characteristically as patchy and regional but in dilated cardiomyopathy (DCM) as diffuse and global. We sought to investigate if texture analyses on myocardial native T(1) mapping can differentiate between fibrosis patterns in patients with HCM and DCM. METHODS: We prospectively acquired native myocardial T(1) mapping images for 321 subjects (55±15 years, 70% male): 65 control, 116 HCM, and 140 DCM patients. To quantify different fibrosis patterns, four sets of texture descriptors were used to extract 152 texture features from native T(1) maps. Seven features were sequentially selected to identify HCM- and DCM-specific patterns in 70% of data (training dataset). Pattern reproducibility and generalizability were tested on the rest of data (testing dataset) using support vector machines (SVM) and regression models. RESULTS: Pattern-derived texture features were capable to identify subjects in HCM, DCM, and controls cohorts with 202/237(85.2%) accuracy of all subjects in the training dataset using 10-fold cross-validation on SVM (AUC = 0.93, 0.93, and 0.93 for controls, HCM and DCM, respectively), while pattern-independent global native T(1) mapping was poorly capable to identify those subjects with 121/237(51.1%) accuracy (AUC = 0.78, 0.51, and 0.74) (P<0.001 for all). The pattern-derived features were reproducible with excellent intra- and inter-observer reliability and generalizable on the testing dataset with 75/84(89.3%) accuracy. CONCLUSION: Texture analysis of myocardial native T(1) mapping can characterize fibrosis patterns in HCM and DCM patients and provides additional information beyond average native T(1) values. Public Library of Science 2020-06-01 /pmc/articles/PMC7263579/ /pubmed/32479518 http://dx.doi.org/10.1371/journal.pone.0233694 Text en © 2020 El-Rewaidy et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article El-Rewaidy, Hossam Neisius, Ulf Nakamori, Shiro Ngo, Long Rodriguez, Jennifer Manning, Warren J. Nezafat, Reza Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping |
title | Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping |
title_full | Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping |
title_fullStr | Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping |
title_full_unstemmed | Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping |
title_short | Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping |
title_sort | characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native t(1) mapping |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263579/ https://www.ncbi.nlm.nih.gov/pubmed/32479518 http://dx.doi.org/10.1371/journal.pone.0233694 |
work_keys_str_mv | AT elrewaidyhossam characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping AT neisiusulf characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping AT nakamorishiro characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping AT ngolong characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping AT rodriguezjennifer characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping AT manningwarrenj characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping AT nezafatreza characterizationofinterstitialdiffusefibrosispatternsusingtextureanalysisofmyocardialnativet1mapping |