Cargando…
CM-supplement network model for reducing the memory consumption during multilabel image annotation
With the rapid development of the Internet and the increasing popularity of mobile devices, the availability of digital image resources is increasing exponentially. How to rapidly and effectively retrieve and organize image information has been a hot issue that urgently must be solved. In the field...
Autores principales: | Cao, Jianfang, Chen, Lichao, Wu, Chenyan, Zhang, Zibang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263637/ https://www.ncbi.nlm.nih.gov/pubmed/32479515 http://dx.doi.org/10.1371/journal.pone.0234014 |
Ejemplares similares
-
An Improved Convolutional Neural Network Algorithm and Its Application in Multilabel Image Labeling
por: Cao, Jianfang, et al.
Publicado: (2019) -
Automatic image annotation method based on a convolutional neural network with threshold optimization
por: Cao, Jianfang, et al.
Publicado: (2020) -
Multilabel Image Annotation Based on Double-Layer PLSA Model
por: Zhang, Jing, et al.
Publicado: (2014) -
A catalogue with semantic annotations makes multilabel datasets FAIR
por: Kostovska, Ana, et al.
Publicado: (2022) -
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
por: Cao, Jianfang, et al.
Publicado: (2015)