Cargando…

Effect of congenital adrenal hyperplasia treated by glucocorticoids on plasma metabolome: a machine-learning-based analysis

Background. Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency leads to impaired cortisol biosynthesis. Treatment includes glucocorticoid supplementation. We studied the specific metabolomics signatures in CAH patients using two different algorithms. Methods. In a case-control stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Lee S., Prifti, Edi, Ichou, Farid, Leban, Monique, Funck-Brentano, Christian, Touraine, Philippe, Salem, Joe-Elie, Bachelot, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264133/
https://www.ncbi.nlm.nih.gov/pubmed/32483270
http://dx.doi.org/10.1038/s41598-020-65897-y
Descripción
Sumario:Background. Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency leads to impaired cortisol biosynthesis. Treatment includes glucocorticoid supplementation. We studied the specific metabolomics signatures in CAH patients using two different algorithms. Methods. In a case-control study of CAH patients matched on sex and age with healthy control subjects, two metabolomic analyses were performed: one using MetaboDiff, a validated differential metabolomic analysis tool and the other, using Predomics, a novel machine-learning algorithm. Results. 168 participants were included (84 CAH patients). There was no correlation between plasma cortisol levels during glucocorticoid supplementation and metabolites in CAH patients. Indoleamine 2,3-dioxygenase enzyme activity was correlated with ACTH (rho coefficient = −0.25, p-value = 0.02), in CAH patients but not in controls subjects. Overall, 33 metabolites were significantly altered in CAH patients. Main changes came from: purine and pyrimidine metabolites, branched aminoacids, tricarboxylic acid cycle metabolites and associated pathways (urea, glucose, pentose phosphates). MetaboDiff identified 2 modules that were significantly different between both groups: aminosugar metabolism and purine metabolism. Predomics found several interpretable models which accurately discriminated the two groups (accuracy of 0.86 and AUROC of 0.9). Conclusion. CAH patients and healthy control subjects exhibit significant differences in plasma metabolomes, which may be explained by glucocorticoid supplementation.