Cargando…
The Visual Word Form Area compensates for auditory working memory dysfunction in schizophrenia
Auditory working memory impairments feature prominently in schizophrenia. However, the existence of altered and perhaps compensatory neural dynamics, sub-serving auditory working memory, remains largely unexplored. We compared the dynamics of induced high gamma power (iHGP) across cortex in humans d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264140/ https://www.ncbi.nlm.nih.gov/pubmed/32483253 http://dx.doi.org/10.1038/s41598-020-63962-0 |
Sumario: | Auditory working memory impairments feature prominently in schizophrenia. However, the existence of altered and perhaps compensatory neural dynamics, sub-serving auditory working memory, remains largely unexplored. We compared the dynamics of induced high gamma power (iHGP) across cortex in humans during speech-sound working memory in individuals with schizophrenia (SZ) and healthy comparison subjects (HC) using magnetoencephalography (MEG). SZ showed similar task performance to HC while utilizing different brain regions. During encoding of speech sounds, SZ lacked the correlation of iHGP with task performance in posterior superior temporal gyrus (STGp) that was observed in healthy subjects. Instead, SZ recruited the visual word form area (VWFA) during both stimulus encoding and response preparation. Importantly, VWFA activity during encoding correlated with the magnitude of SZ hallucinations, task performance and an independent measure of verbal working memory. These findings suggest that VWFA plasticity is harnessed to compensate for STGp dysfunction in schizophrenia patients with hallucinations. |
---|