Cargando…

Closing the gap towards super-long suspension bridges using computational morphogenesis

Girder design for suspension bridges has remained largely unchanged for the past 60 years. However, for future super-long bridges, aiming at record-breaking spans beyond 3 km, the girder weight is a limiting factor. Here we report on a design concept, inspired by computational morphogenesis procedur...

Descripción completa

Detalles Bibliográficos
Autores principales: Baandrup, Mads, Sigmund, Ole, Polk, Henrik, Aage, Niels
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264174/
https://www.ncbi.nlm.nih.gov/pubmed/32483204
http://dx.doi.org/10.1038/s41467-020-16599-6
Descripción
Sumario:Girder design for suspension bridges has remained largely unchanged for the past 60 years. However, for future super-long bridges, aiming at record-breaking spans beyond 3 km, the girder weight is a limiting factor. Here we report on a design concept, inspired by computational morphogenesis procedures, demonstrating possible weight savings in excess of 28 percent while maintaining manufacturability. Although morphogenesis procedures are rarely used in civil engineering, often due to complicated designs, we demonstrate that even a crude extraction of the main features of the optimized design, followed by a simple parametric optimization, results in hitherto unseen weight reductions. We expect that further studies of the proposed design, as well as applications to other structures, will lead to even greater weight savings and reductions in carbon footprint in a construction industry, currently responsible for 39 percent of the world’s CO(2) emissions.