Cargando…
Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles
The different skeletal muscle fiber types exhibit distinctively different physiological and metabolic properties, and have been linked to both human metabolic diseases and meat quality traits in livestock. Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression, but reg...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264268/ https://www.ncbi.nlm.nih.gov/pubmed/32528948 http://dx.doi.org/10.3389/fcell.2020.00322 |
_version_ | 1783540939787075584 |
---|---|
author | Li, Bojiang Yin, Di Li, Pinghua Zhang, Zengkai Zhang, Xiying Li, Hongqiang Li, Rongyang Hou, Liming Liu, Honglin Wu, Wangjun |
author_facet | Li, Bojiang Yin, Di Li, Pinghua Zhang, Zengkai Zhang, Xiying Li, Hongqiang Li, Rongyang Hou, Liming Liu, Honglin Wu, Wangjun |
author_sort | Li, Bojiang |
collection | PubMed |
description | The different skeletal muscle fiber types exhibit distinctively different physiological and metabolic properties, and have been linked to both human metabolic diseases and meat quality traits in livestock. Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression, but regulatory mechanisms of skeletal muscle fibers involved in circRNAs remain poorly understood. Here, we constructed circRNA expression profiles of three fast-twitch biceps femoris (Bf) and three slow-twitch soleus (Sol) muscles in pigs using RNA-seq and identified 16,342 distinct circRNA candidates. Notably, 242 differentially expressed (DE) circRNAs between Bf and Sol muscles were identified, including 105 upregulated and 137 downregulated circRNAs, and are thus potential candidates for the regulation of skeletal muscle fiber conversion. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of host genes of DE circRNAs revealed that host genes were mainly involved in skeletal muscle fiber-related GO terms (e.g., muscle contraction, contractile fiber part, and Z disk) and skeletal muscle fiber-related signaling pathways (e.g., AMPK and cGMP-PKG). We also constructed co-expression networks of DE circRNA-miRNA-mRNA using previously acquired high-throughput sequencing mRNA and miRNA data, from which 112 circRNA-miRNA and 95 miRNA-mRNA interactions were identified. Multiple circRNAs essentially serve as a sponge for miR-499-5p, which is preferentially expressed in slow-twitch muscle and reduces the severity of Duchenne muscular dystrophy (DMD). Taken together, a series of novel candidate circRNAs involved in the growth and development of porcine skeletal muscle was identified. Furthermore, they provide a comprehensive circRNA resource for further in-depth research on the regulatory mechanisms of circRNA in the formation of skeletal muscle fiber, and may provide insights into human skeletal muscle diseases. |
format | Online Article Text |
id | pubmed-7264268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72642682020-06-10 Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles Li, Bojiang Yin, Di Li, Pinghua Zhang, Zengkai Zhang, Xiying Li, Hongqiang Li, Rongyang Hou, Liming Liu, Honglin Wu, Wangjun Front Cell Dev Biol Cell and Developmental Biology The different skeletal muscle fiber types exhibit distinctively different physiological and metabolic properties, and have been linked to both human metabolic diseases and meat quality traits in livestock. Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression, but regulatory mechanisms of skeletal muscle fibers involved in circRNAs remain poorly understood. Here, we constructed circRNA expression profiles of three fast-twitch biceps femoris (Bf) and three slow-twitch soleus (Sol) muscles in pigs using RNA-seq and identified 16,342 distinct circRNA candidates. Notably, 242 differentially expressed (DE) circRNAs between Bf and Sol muscles were identified, including 105 upregulated and 137 downregulated circRNAs, and are thus potential candidates for the regulation of skeletal muscle fiber conversion. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of host genes of DE circRNAs revealed that host genes were mainly involved in skeletal muscle fiber-related GO terms (e.g., muscle contraction, contractile fiber part, and Z disk) and skeletal muscle fiber-related signaling pathways (e.g., AMPK and cGMP-PKG). We also constructed co-expression networks of DE circRNA-miRNA-mRNA using previously acquired high-throughput sequencing mRNA and miRNA data, from which 112 circRNA-miRNA and 95 miRNA-mRNA interactions were identified. Multiple circRNAs essentially serve as a sponge for miR-499-5p, which is preferentially expressed in slow-twitch muscle and reduces the severity of Duchenne muscular dystrophy (DMD). Taken together, a series of novel candidate circRNAs involved in the growth and development of porcine skeletal muscle was identified. Furthermore, they provide a comprehensive circRNA resource for further in-depth research on the regulatory mechanisms of circRNA in the formation of skeletal muscle fiber, and may provide insights into human skeletal muscle diseases. Frontiers Media S.A. 2020-05-26 /pmc/articles/PMC7264268/ /pubmed/32528948 http://dx.doi.org/10.3389/fcell.2020.00322 Text en Copyright © 2020 Li, Yin, Li, Zhang, Zhang, Li, Li, Hou, Liu and Wu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Li, Bojiang Yin, Di Li, Pinghua Zhang, Zengkai Zhang, Xiying Li, Hongqiang Li, Rongyang Hou, Liming Liu, Honglin Wu, Wangjun Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles |
title | Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles |
title_full | Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles |
title_fullStr | Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles |
title_full_unstemmed | Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles |
title_short | Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles |
title_sort | profiling and functional analysis of circular rnas in porcine fast and slow muscles |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264268/ https://www.ncbi.nlm.nih.gov/pubmed/32528948 http://dx.doi.org/10.3389/fcell.2020.00322 |
work_keys_str_mv | AT libojiang profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT yindi profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT lipinghua profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT zhangzengkai profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT zhangxiying profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT lihongqiang profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT lirongyang profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT houliming profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT liuhonglin profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles AT wuwangjun profilingandfunctionalanalysisofcircularrnasinporcinefastandslowmuscles |